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Homotopy Type Theory

- types ~= spaces
- terms ~= points
- functions ~= continuous maps
- identifications ~= paths

* Non-trivial identifications

* Type theory <-> topology
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Subject of Study

fundamental groups of pushouts
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Subject of Study

"structure of loops"

fundamental groups of pushouts
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Subject of Study

"structure of loops"

fundamental groups of pushouts

"disjoint union added with bridges"
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Fundamental Groups
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(unique) ways to
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here they correspond
to integers

positive <--> clockwise
negative <--> counter
    zero <--> staying
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Fundamental Groups

a
(unique) ways to
travel from a to a

here they correspond
to integers

positive <--> clockwise
negative <--> counter
    zero <--> staying

Trunc 0 (a == a) ~= Z
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Fundamental Groups

a
(unique) ways to
travel from a to a

much more if a new
path   is added

Trunc 0 (a == a) ~= Z * Z
(free product)
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(Homotopy) Pushouts
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(Homotopy) Pushouts

A
B

C
data Pushout (A B C : Type)

             (f : C -> A) (g : C -> B) : Type where

  left  : A -> Pushout A B C f g

  right : B -> Pushout A B C f g

  glue  : (c : C) -> left (f c) == right (g c)

c
f(c)

g(c)
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(Homotopy) Pushouts
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A
B

C
alternative paths in A and B

(Homotopy) Pushouts
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Theorem Statement

fund.grp(pushout)
     ~= ?(??(A), ??(B), C)

??: paths between any two points

for any A, B, C, f and g, 
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Fundamental Groupoids

a (unique) ways to
travel from a to b

b Trunc 0 (a == b)
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Theorem Statement

fund.groupoid(pushout)
     ~= ?(fund.groupoid(A),
          fund.groupoid(B), C)

 ?: "seqs of alternative elems"

for any A, B, C, f and g, 
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Alternative Sequences

induction on both ends:
  A to A, A to B,
  B to A, B to B

[p1, p2, ..., pn]

A B
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Alternative Sequences

A B

=

A B

A B

=

A B

quotients of
alternative
sequences by
killing trivial
identifications
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Alternative Sequences

each case is a quotient
of alternative sequences

induction on both ends:
  A to A, A to B,
  B to A, B to B

[p1, p2, ..., pn]

A B
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Alternative Sequences

next: unify four cases into
      one type family alt.seq
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Alternative Sequences

next: unify four cases into
      one type family alt.seq

alt.seq a (f c) ~= alt.seq a (g c)

~=

show respects for bridges by C. ex:
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alt.seq a (f c) ~= alt.seq a (g c)

~=
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[..., p] |--> [..., p, trivial]

alt.seq a (f c) ~= alt.seq a (g c)

~=

|-->
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[..., p] |--> [..., p, trivial]

alt.seq a (f c) ~= alt.seq a (g c)

[..., p, trivial] <--| [..., p]

~=

|-->

<--|
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Alternative Sequences

A -> A A -> B

B -> A B -> B

seq a (f c) ~= seq a (g c)

seq b (f c) ~= seq b (g c)

s
e
q
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c
)
 
a
 
~
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c
)
 
b

commutes



20

Theorem

fund.groupoid(pushout)
 ~= alt.seqs(fund.groupoid(A),
             fund.groupoid(B), C)

(zero pages left before the proofs)

for any A, B, C, f and g, 
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Recipe of Equivalences

* two functions back and forth
("decode" and "encode")

* round-trips are identity
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fund.groupoid -> alt.seqs
(all paths)

encode

Trunc 0 (p == q) -> alt.seqs p q
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fund.groupoid -> alt.seqs

path induction:
  consider only trivial paths

(all paths)
encode

Trunc 0 (p == q) -> alt.seqs p q

(p : Pushout) -> alt.seqs p p
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fund.groupoid -> alt.seqs

path induction:
  consider only trivial paths

(all paths)
encode

Trunc 0 (p == q) -> alt.seqs p q

(p : Pushout) -> alt.seqs p p

pushout induction

A B

A

A B

B
bridges by C
(next page)
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A B

A B A B
applying the diagonal
in coherence square

=?

case A

case B
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A B

A B A B
applying the diagonal
in coherence square

=?

case A

case B

witnessed by the quotient
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alt.seq -> fund.groupoid
just compositions!

decode
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alt.seq -> fund.groupoid
just compositions!

decode

grpd -> seqs -> grpd
again by path induction
(similar to "encode")

decodeencode
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alt.seq -> fund.groupoid
just compositions!

decode

grpd -> seqs -> grpd
again by path induction
(similar to "encode")

seqs -> grpd -> seqs
induction on sequences
lemma: encode(decode[p1,p2,...])
     = p1 :: encode(decode[p2,...])

decodeencode

encodedecode
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Theorem

fund.groupoid(pushout)
  = alt.seqs(fund.groupoid(A),
             fund.groupoid(B), C)

for any A, B, C, f and g, 
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Final Notes

* Refined version: Can focus on
  just the set of base points of C
  covering its components.

github.com/HoTT/HoTT-Agda/blob/1.0/Homotopy/VanKampen.agda

* All mechanized in Agda

www.cs.cmu.edu/~kuenbanh/files/vankampen.pdf

* Submitted to CSL 2016


