Seifert-van Kampen Theorem
1n Homotopy Type Theory

| Toronto version |

Michael Shulman @ U of San Diego
* Favonia @ CMU

Homotopy Type Theory

* Type theory <-> topology

- types ~= spaces

- terms ~= points

- functions ~= continuous maps
- 1dentifications ~= paths

* Non-trivial 1dentifications

Iterated Paths

m terms

Iterated Paths

3 m Lerms
ﬁ —— paths
D

Iterated Paths

3 m Lerms
h oo
D

Iterated Paths

m terms
— paths

[] paths or paths

Functorial

Subject of Stuady

fundamental groups of pushouts

Subject of Stuady

fundamental groups of pushouts

'structure of Lloops"”

Subject of Stuady

fundamental groups of pushouts

'structure of Lloops"”

"disjoint union added with bridges”

Fundamental Groups

(unique) ways to
travel from a to a

Fundamental Groups

(unique) ways to
travel from a to a

here they correspond
to 1ntegers

positive <--> clockwise
negative <--> counter
Zero <--> stayilng

Fundamental Groups

(unique) ways to
travel from a to a

here they correspond
to 1ntegers

positive <--> clockwise
negative <--> counter
Zero <--> stayilng

Trunc 0 (a == a) ~= [/

Fundamental Groups

(unique) ways to
travel from a to a

much more 1f a new
path & 1s added

Trunc 0 (@ == a) ~= Z * [/
(free product)

(Homotopy) Pushouts

(Homotopy) Pushouts

g(c)

A f(cC)

data Pushout (A B C : Type)
(f : C ->A) (g: C ->B) : Type where
left : A -> Pushout A B C f g
right : B -> Pushout A B C T ¢
glue : (c : C) -> left (f c) == right (g c)

(Homotopy) Pushouts

ways to travel from m to m ?

10

(Homotopy) Pushouts

A C

alternative paths 1n A and B

n B

10

Theorem Statement

for any A, B, C, T and g,
fund.grp(pushout)
~= 72(7?7(A), 722(B), C)

??7: paths between any two points

11

Fundamental Groupoids

(unique) ways to
travel from a to b

Trunc 0 (a == Db)

12

Theorem Statement

for any A, B, C, T and g,
fund.groupold(pushout)
~= 7(fund.groupoid(A),
funda.groupoid(B), C)

?: "seqs of alternative elems”

13

Alternative Sequences

[pl, p2, ..., pn]

induction on both ends:
A to A, A to B,
B to A, B to B

14

Alternative Sequences

— |:| quotients of
alternative
A B A B

sequences by

killing trivial
1 - identifications
A B A B

15

Alternative Sequences

[pl, p2, ..., pn]

induction on both ends:
A to A, A to B,

" B B to A, B to B

each case 1s a quotient
of alternative sequences

16

Alternative Sequences

next: unify four cases 1into
one type family alt.seg

17

Alternative Sequences

next: unify four cases 1into
one type family alt.seg

show respects for bridges by C. ex:

alt.seq a ~= alt.seq a (g C)

17

alt.seq a (f ¢c) ~= alt.seq a (g c)

13

alt.seq a (f ¢c) ~= alt.seq a (g c)

13

alt.seq a (f ¢c) ~= alt.seq a (g c)

..., p, trivial] <--| [..., pl

EEE

13

Alternative Sequences

seq a (f ¢c) ~= seq a (g c)
A -> A o o A -> B
[8) [8)
= =
O O
7 7
? commutes ?
(O O
%) %)
= =
0 0
B -> A v 2" B -> B
seq b (f ¢c) ~=5seq b (g c)

19

Theorem

for any A, B, C, T and g,

fund.groupoid(pushout)

~= alt.seqs(fund.groupoid(A),
fund.groupoia(B), C)

(zero pages left before the proofs)

20

Recipe of Equivalences

* two functions back and forth
("decode" and "encode")

* round-trips are identity

21

fund.groupold
(all paths)

Trunc 0 (p == Q)

-> glt.seqs

encode

-> alt.seqgs p ¢

22

fund.groupoid -> alt.seqs
(all paths)

Trunc 0 (p == q) -> alt.segs p ¢

path 1nduction:
consider only trivial paths

(p : Pushout) -> alt.seqgs p p

22

fund.groupoid -> alt.seqs
(all paths)

Trunc 0 (p == q) -> alt.segs p ¢

path 1nduction:
consider only trivial paths

(p : Pushout) -> alt.seqgs p p

pushout 1nduction

bridges by C
O -0 e
A B A B

22

case A E|

applying the diagonal
1n coherence square

23

case A D

applying the diagonal
1n coherence square

witnessed by the quotient

23

alt.seq -> fund.groupoid

decode
just compositions'!

24

alt.seq -> fund.groupoid

decode
just compositions'!

grpd -> seqs .-> grpd

encode decode
agaln by path 1nduction

(similar to "encode")

24

alt.seq -> fund.groupoid

decode
just compositions'!

grpd -> seqs .-> grpd

encode decode
agaln by path 1nduction

(similar to "encode")

seqs -> grpd -> seqs

| dqcode encode
1nduction on sequences

Lemma: encode(decodelpl,p2,...])
= pl :: encode(decode|p2,...])

24

Theorem

for any A, B, C, T and g,
fund.groupoid(pushout)
= alt.seqs(fund.groupoid(A),
fund.groupoia(B), C)

25

Final Notes

* Refined version: Can focus on
just the set of base points of C
covering 1ts components.

* ALL mechanized 1n Agda

github.com/HoTT/HoTT-Agda/blob/1.0/Homotopy/VanKampen.agda

* Submitted to CSL 2010

www.CS.cmu.edu/~kuenbanh/files/vankampen.pdf

20

