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Homotopy Type Theory

* Type theory <-> topology

- types ~= spaces

- terms ~= points

- functions ~= continuous maps
- 1dentifications ~= paths

* Non-trivial 1dentifications
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Iterated Paths

m terms
— paths

[ ] paths or paths
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Subject of Stuady

fundamental groups of pushouts

'structure of Lloops"”

"disjoint union added with bridges”
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(unique) ways to
travel from a to a

here they correspond
to 1ntegers

positive <--> clockwise
negative <--> counter
Zero <--> stayilng

Trunc 0 (a == a) ~= [/



Fundamental Groups

(unique) ways to
travel from a to a

much more 1f a new
path & 1s added

Trunc 0 (@ == a) ~= Z * [/
(free product)
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(Homotopy) Pushouts

g(c)

A f(cC)

data Pushout (A B C : Type)
(f : C ->A) (g: C ->B) : Type where
left : A -> Pushout A B C f g
right : B -> Pushout A B C T ¢
glue : (c : C) -> left (f c) == right (g c)




(Homotopy) Pushouts

ways to travel from m to m ?
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(Homotopy) Pushouts

A C

alternative paths 1n A and B

n B
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Theorem Statement

for any A, B, C, T and g,
fund.grp(pushout)
~= 72(7?7(A), 722(B), C)

??7: paths between any two points
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Fundamental Groupoids

(unique) ways to
travel from a to b

Trunc 0 (a == Db)
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Theorem Statement

for any A, B, C, T and g,
fund.groupold(pushout)
~= 7(fund.groupoid(A),
funda.groupoid(B), C)

?: "seqs of alternative elems”
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Alternative Sequences

[pl, p2, ..., pn]

induction on both ends:
A to A, A to B,
B to A, B to B
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Alternative Sequences

— |:| quotients of
alternative
A B A B

sequences by

killing trivial
1 - identifications
A B A B
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Alternative Sequences

[pl, p2, ..., pn]

induction on both ends:
A to A, A to B,

" B B to A, B to B

each case 1s a quotient
of alternative sequences
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Alternative Sequences

next: unify four cases 1into
one type family alt.seg
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Alternative Sequences

next: unify four cases 1into
one type family alt.seg

show respects for bridges by C. ex:

alt.seq a ~= alt.seq a (g C)
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alt.seq a (f ¢c) ~= alt.seq a (g c)
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alt.seq a (f ¢c) ~= alt.seq a (g c)
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alt.seq a (f ¢c) ~= alt.seq a (g c)

..., p, trivial] <--| [..., pl

EEE
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Alternative Sequences

seq a (f ¢c) ~= seq a (g c)
A -> A o o A -> B
[8) [8)
= =
O O
7 7
? commutes ?
(O O
%) %)
= =
0 0
B -> A v 2" B -> B
seq b (f ¢c) ~=5seq b (g c)
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Theorem

for any A, B, C, T and g,

fund.groupoid(pushout)

~= alt.seqs(fund.groupoid(A),
fund.groupoia(B), C)

(zero pages left before the proofs)
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Recipe of Equivalences

* two functions back and forth
("decode" and "encode")

* round-trips are identity
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fund.groupold
(all paths)

Trunc 0 (p == Q)

-> glt.seqs

encode

-> alt.seqgs p ¢
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fund.groupoid -> alt.seqs
(all paths)

Trunc 0 (p == q) -> alt.segs p ¢

path 1nduction:
consider only trivial paths

(p : Pushout) -> alt.seqgs p p

22



fund.groupoid -> alt.seqs
(all paths)

Trunc 0 (p == q) -> alt.segs p ¢

path 1nduction:
consider only trivial paths

(p : Pushout) -> alt.seqgs p p

pushout 1nduction

bridges by C
O -0 e
A B A B
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case A E|

applying the diagonal
1n coherence square
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case A D

applying the diagonal
1n coherence square

witnessed by the quotient
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alt.seq -> fund.groupoid

decode
just compositions'!
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alt.seq -> fund.groupoid

decode
just compositions'!

grpd -> seqs .-> grpd

encode decode
agaln by path 1nduction

(similar to "encode")
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alt.seq -> fund.groupoid

decode
just compositions'!

grpd -> seqs .-> grpd

encode decode
agaln by path 1nduction

(similar to "encode")

seqs -> grpd -> seqs

| dqcode encode
1nduction on sequences

Lemma: encode(decodelpl,p2,...])
= pl :: encode(decode|p2,...])
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Theorem

for any A, B, C, T and g,
fund.groupoid(pushout)
= alt.seqs(fund.groupoid(A),
fund.groupoia(B), C)
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Final Notes

* Refined version: Can focus on
just the set of base points of C
covering 1ts components.

* ALL mechanized 1n Agda

github.com/HoTT/HoTT-Agda/blob/1.0/Homotopy/VanKampen.agda

* Submitted to CSL 2010

www.CS.cmu.edu/~kuenbanh/files/vankampen.pdf
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