
1

Seifert-van Kampen Theorem
in Homotopy Type Theory

* Favonia @ CMU
 Michael Shulman @ U of San Diego

[Toronto version]

2

Homotopy Type Theory

- types ~= spaces
- terms ~= points
- functions ~= continuous maps
- identifications ~= paths

* Non-trivial identifications

* Type theory <-> topology

3

a

b

terms

Iterated Paths

3

a

b

terms

paths

Iterated Paths

3

a

b

terms

paths

Iterated Paths

3

a

b

terms

paths

paths of paths

Iterated Paths

4

a

b

f(a)

f(b)

~>
f

A B

Functorial

5

Subject of Study

fundamental groups of pushouts

5

Subject of Study

"structure of loops"

fundamental groups of pushouts

5

Subject of Study

"structure of loops"

fundamental groups of pushouts

"disjoint union added with bridges"

6

Fundamental Groups

a
(unique) ways to
travel from a to a

6

Fundamental Groups

a
(unique) ways to
travel from a to a

here they correspond
to integers

positive <--> clockwise
negative <--> counter
 zero <--> staying

6

Fundamental Groups

a
(unique) ways to
travel from a to a

here they correspond
to integers

positive <--> clockwise
negative <--> counter
 zero <--> staying

Trunc 0 (a == a) ~= Z

7

Fundamental Groups

a
(unique) ways to
travel from a to a

much more if a new
path is added

Trunc 0 (a == a) ~= Z * Z
(free product)

8

(Homotopy) Pushouts

A
B

C

8

(Homotopy) Pushouts

A
B

C
data Pushout (A B C : Type)

 (f : C -> A) (g : C -> B) : Type where

 left : A -> Pushout A B C f g

 right : B -> Pushout A B C f g

 glue : (c : C) -> left (f c) == right (g c)

c
f(c)

g(c)

9

A
B

C
ways to travel from to ?

(Homotopy) Pushouts

10

A
B

C

(Homotopy) Pushouts

10

A
B

C
alternative paths in A and B

(Homotopy) Pushouts

11

Theorem Statement

fund.grp(pushout)
 ~= ?(??(A), ??(B), C)

??: paths between any two points

for any A, B, C, f and g,

12

Fundamental Groupoids

a (unique) ways to
travel from a to b

b Trunc 0 (a == b)

13

Theorem Statement

fund.groupoid(pushout)
 ~= ?(fund.groupoid(A),
 fund.groupoid(B), C)

 ?: "seqs of alternative elems"

for any A, B, C, f and g,

14

Alternative Sequences

induction on both ends:
 A to A, A to B,
 B to A, B to B

[p1, p2, ..., pn]

A B

15

Alternative Sequences

A B

=

A B

A B

=

A B

quotients of
alternative
sequences by
killing trivial
identifications

16

Alternative Sequences

each case is a quotient
of alternative sequences

induction on both ends:
 A to A, A to B,
 B to A, B to B

[p1, p2, ..., pn]

A B

17

Alternative Sequences

next: unify four cases into
 one type family alt.seq

17

Alternative Sequences

next: unify four cases into
 one type family alt.seq

alt.seq a (f c) ~= alt.seq a (g c)

~=

show respects for bridges by C. ex:

18

alt.seq a (f c) ~= alt.seq a (g c)

~=

18

[..., p] |--> [..., p, trivial]

alt.seq a (f c) ~= alt.seq a (g c)

~=

|-->

18

[..., p] |--> [..., p, trivial]

alt.seq a (f c) ~= alt.seq a (g c)

[..., p, trivial] <--| [..., p]

~=

|-->

<--|

19

Alternative Sequences

A -> A A -> B

B -> A B -> B

seq a (f c) ~= seq a (g c)

seq b (f c) ~= seq b (g c)

s
e
q

(
f

c
)

a

~
=

s
e
q

(
g

c
)

a

s
e
q

(
f

c
)

b

~
=

s
e
q

(
g

c
)

b

commutes

20

Theorem

fund.groupoid(pushout)
 ~= alt.seqs(fund.groupoid(A),
 fund.groupoid(B), C)

(zero pages left before the proofs)

for any A, B, C, f and g,

21

Recipe of Equivalences

* two functions back and forth
("decode" and "encode")

* round-trips are identity

22

fund.groupoid -> alt.seqs
(all paths)

encode

Trunc 0 (p == q) -> alt.seqs p q

22

fund.groupoid -> alt.seqs

path induction:
 consider only trivial paths

(all paths)
encode

Trunc 0 (p == q) -> alt.seqs p q

(p : Pushout) -> alt.seqs p p

22

fund.groupoid -> alt.seqs

path induction:
 consider only trivial paths

(all paths)
encode

Trunc 0 (p == q) -> alt.seqs p q

(p : Pushout) -> alt.seqs p p

pushout induction

A B

A

A B

B
bridges by C
(next page)

23

A B

A B A B
applying the diagonal
in coherence square

=?

case A

case B

23

A B

A B A B
applying the diagonal
in coherence square

=?

case A

case B

witnessed by the quotient

24

alt.seq -> fund.groupoid
just compositions!

decode

24

alt.seq -> fund.groupoid
just compositions!

decode

grpd -> seqs -> grpd
again by path induction
(similar to "encode")

decodeencode

24

alt.seq -> fund.groupoid
just compositions!

decode

grpd -> seqs -> grpd
again by path induction
(similar to "encode")

seqs -> grpd -> seqs
induction on sequences
lemma: encode(decode[p1,p2,...])
 = p1 :: encode(decode[p2,...])

decodeencode

encodedecode

25

Theorem

fund.groupoid(pushout)
 = alt.seqs(fund.groupoid(A),
 fund.groupoid(B), C)

for any A, B, C, f and g,

26

Final Notes

* Refined version: Can focus on
 just the set of base points of C
 covering its components.

github.com/HoTT/HoTT-Agda/blob/1.0/Homotopy/VanKampen.agda

* All mechanized in Agda

www.cs.cmu.edu/~kuenbanh/files/vankampen.pdf

* Submitted to CSL 2016

