* Favonia @ CMU

Seifert-van Kampen Theorem in Homotopy Type Theory

[Toronto version]

Michael Shulman @ U of San Diego

* Type theory <-> topology

- types ~= spaces - terms ~= points

Homotopy Type Theory

- functions ~= continuous maps
- identifications ~= paths
- * Non-trivial identifications

terms

terms ____ paths

terms paths

terms paths paths of paths

Functorial

А

f

Subject of Study

fundamental groups of pushouts

Subject of Study

fundamental groups of pushouts

"structure of loops"

Subject of Study

"structure of loops" "disjoint union added with bridges"

fundamental groups of pushouts

(unique) ways to travel from a to a

(unique) ways to travel from a to a here they correspond to integers positive <--> clockwise
negative <--> counter zero <--> staying

(unique) ways to travel from a to a here they correspond to integers positive <--> clockwise
negative <--> counter zero <--> staying

Trunc 0 (a == a) \sim = Z

(unique) ways to travel from a to a much more if a new
path ***** is added

Trunc 0 (a == a) \sim = Z * Z (free product)

data Pushout (A B C : Type)

- left : $A \rightarrow Pushout A B C f g$
- right : B -> Pushout A B C f g

Theorem Statement

for any A, B, C, f and g, fund.grp(pushout) ~= ?(??(A), ??(B), C)

??: paths between any two points

(unique) ways to travel from a to b **Trunc** 0 (a == b)

Theorem Statement

fund.groupoid(pushout)

for any A, B, C, f and g, ~= ?(fund.groupoid(A), fund.groupoid(B), C)

?: "seqs of alternative elems"

Alternative Sequences

[p1, p2, ..., pn]
induction on both ends: A to A, A to B, B to A, B to B

Alternative Sequences

quotients of alternative sequences by killing trivial identifications

Alternative Sequences

[p1, p2, ..., pn] induction on both ends: A to A, A to B, B to A, B to B

each case is a quotient of alternative sequences

Alternative Sequences next: unify four cases into one type family alt.seq

Alternative Sequences next: unify four cases into one type family alt.seq show respects for bridges by C. ex: alt.seq a (f c) ~= alt.seq a (g c)

[..., p, trivial] <--| [..., p]

Alternative Sequences seq a (f c) ~= seq a (g c)

commutes

seq b (f c) ~= seq b (g c)

ΰ e G G Ч) Seq

Theorem

fund.groupoid(pushout)

for any A, B, C, f and g, ~= alt.seqs(fund.groupoid(A), fund.groupoid(B), C)

(zero pages left before the proofs)

Recipe of Equivalences

* two functions back and forth ("decode" and "encode") * round-trips are identity

fund.groupoid -> alt.seqs (all paths) Trunc 0 (p == q) -> alt.seqs p q

path induction:

- fund.groupoid -> alt.seqs
 (all paths)
 - Trunc 0 (p == q) -> alt.seqs p q consider only trivial paths (p : Pushout) -> alt.seqs p p

path induction: pushout induction

fund.groupoid -> alt.seqs (all paths)

Trunc 0 (p == q) -> alt.seqs p q consider only trivial paths (p : Pushout) -> alt.seqs p p

_ 2 case B witnessed by the quotient

alt.seq -> fund.groupoid just compositions!

alt.seq -> fund.groupoid just compositions!

grpd -> seqs -> grpd encode again by path induction (similar to "encode")

alt.seq -> fund.groupoid just compositions!

grpd -> seqs -> grpd encode again by path induction (similar to "encode")

Seqs -> grpd -> seqs
decode induction on sequences lemma: encode(decode[p1,p2,...]) = p1 :: encode(decode[p2,...])

Theorem

fund.groupoid(pushout)

for any A, B, C, f and g, = alt.seqs(fund.groupoid(A), fund.groupoid(B), C)

Final Notes

* All mechanized in Agda

* Submitted to CSL 2016 www.cs.cmu.edu/~kuenbanh/files/vankampen.pdf

* Refined version: Can focus on just the set of base points of C covering its components.

github.com/HoTT/HoTT-Agda/blob/1.0/Homotopy/VanKampen.agda

