Seifert-van Kampen Theorem in Homotopy Type Theory

[Toronto version]

Michael Shulman @ U of San Diego * Favonia @ CMU

Homotopy Type Theory

* Type theory <-> topology
- types ~= spaces
- terms ~= points
- functions ~= continuous maps
- identifications ~= paths
* Non-trivial identifications

Iterated Paths

Iterated Paths

Iterated Paths

Iterated Paths

- terms
 _ paths

\square paths of paths

Functorial

Subject of Study

fundamental groups of pushouts

Subject of Study

fundamental groups of pushouts
"structure of loops"

Subject of Study

fundamental groups of pushouts

"structure of loops"
"disjoint union added with bridges"

Fundamental Groups

(unique) ways to
travel from a to a

Fundamental Groups

(unique) ways to travel from a to a
here they correspond to integers
positive <--> clockwise
negative <--> counter
zero <--> staying

Fundamental Groups

(unique) ways to travel from a to a here they correspond to integers
positive <--> clockwise
negative <--> counter zero <--> staying

Trunc 0 ($\mathrm{a}==\mathrm{a}) ~ \sim=\mathrm{Z}$

Fundamental Groups

(unique) ways to travel from a to a much more if a new path k is added

Trunc 0 (a == a) ~= Z * Z (free product)

(Homotopy) Pushouts

(Homotopy) Pushouts

data Pushout (A B C : Type)

$$
(f: C->A)(g: C ~->B): T y p e ~ w h e r e ~
$$

left : A -> Pushout A B C f g
right : B -> Pushout A B C f g
glue : ($c: C$) -> left (f c) == right (g c)

(Homotopy) Pushouts

ways to travel from ■ to ■ ?

(Homotopy) Pushouts

(Homotopy) Pushouts

alternative paths in A and B

Theorem Statement
for any A, B, C, f and g, fund.grp(pushout)

$$
\sim=?(? ?(A), ? ?(B), C)
$$

??: paths between any two points

Fundamental Groupoids

(unique) ways to travel from a to b
Trunc 0 (a == b)

Theorem Statement

for any A, B, C, f and g,
fund.groupoid(pushout) ~= ?(fund.groupoid(A), fund.groupoid(B), C)
?: "seqs of alternative elems"

Alternative Sequences

[p1, p2, ..., pn]
induction on both ends:
A to A, A to B,
B to A, B to B

Alternative Sequences

quotients of
alternative
sequences by killing trivial identifications

Alternative Sequences

[p1, p2, ..., pn]
induction on both ends: A to A, A to B, B to A, B to B
each case is a quotient of alternative sequences

Alternative Sequences
next: unify four cases into
one type family alt.seq

Alternative Sequences

next: unify four cases into one type family alt.seq
show respects for bridges by C. ex: alt.seq a (f c) ~= alt.seq a (g c)

alt.seq a (f c) ~= alt.seq a (g c)

alt.seq a (f c) ~= alt.seq a (g c)

alt.seq a (f c) ~= alt.seq a (g c)

[..., p] |--> [..., p, trivial]

[..., p, trivial] <--| [..., p]

Alternative Sequences

for any A, B, C, f and g, fund.groupoid(pushout)
 ~= alt.seqs(fund.groupoid(A), fund.groupoid(B), C)

(zero pages left before the proofs)

Recipe of Equivalences

* two functions back and forth ("decode" and "encode")
* round-trips are identity
fund.groupoid $\underset{\text { encode }}{->}$ alt.seqs (all paths)

Trunc 0 (p == q) -> alt.seqs p q

fund.groupoid $\underset{\text { encode }}{->}$ alt. seqs (all paths)

Trunc 0 (p == q) -> alt.seqs p q path induction: consider only trivial paths (p : Pushout) -> alt.seqs p p

fund.groupoid $\underset{\text { encode }}{->}$ alt. seqs (all paths)

Trunc 0 (p == q) -> alt.seqs p q path induction: consider only trivial paths (p : Pushout) -> alt.seqs p p pushout induction

B

bridges by C
(next page)

22

case A

applying the diagonal in coherence square

case A

applying the diagonal in coherence square
witnessed by the quotient
23
alt.seq $\underset{\text { decode }}{->}$ fund.groupoid just compositions!
alt.seq $\underset{\text { decode }}{->}$ fund.groupoid just compositions!
grpd $\underset{\text { encode }}{->} \mathrm{seqs} \underset{\text { decode }}{->} \mathrm{grpd}$
again by path induction (similar to "encode")
alt.seq $\underset{\text { decode }}{->}$ fund.groupoid just compositions!
grpd $\underset{\text { encode }}{->} \operatorname{seqs} \underset{\text { decode }}{->}$ grpd
again by path induction (similar to "encode")
seqs $\underset{\text { decode }}{->}$ grpd $\underset{\text { encode }}{->}$ seqs induction on sequences lemma: encode(decode[p1,p2,...])
= p1 :: encode(decode[p2,...])
for any A, B, C, f and g, fund.groupoid(pushout)
= alt.seqs(fund.groupoid(A), fund.groupoid(B), C)

25

Final Notes

* Refined version: Can focus on just the set of base points of C covering its components.
* All mechanized in Agda
github.com/HoTT/HoTT-Agda/blob/1.0/Homotopy/VanKampen.agda
* Submitted to CSL 2016
www.cs.cmu.edu/~kuenbanh/files/vankampen.pdf

