The Seifert-van Kampen Theorem in Homotopy Type Theory

[CSL 2016]

* Favonia, Carnegie Mellon University, USA Michael Shulman, University of San Diego, USA

Homotopy Type Theory

Do homotopy theory in type theory

Hopf fibrations, Eilenberg-Mac Lane spaces, homotopy groups of spheres, Mayer-Vietoris sequences, Blakers-Massey... [HoTT book; Cavallo 14; Hou (Favonia), Finster, Licata & Lumsdaine 16; ...]

- 1. Mechanization
- 2. Translations to other models synthetic homotopy theory

terms

Every function is a functor

Types	and Spa	Ces
A	Туре	Space
a : A	Term	Point
f : $A \rightarrow B$	Function	Continuous Mapping
C : $A \rightarrow Type$	Dependent Type	Fibration
C(a)		Fiber
$p: a =_A b$	Identification	Path

[subject of study]

Fundamental groups of pushouts

[subject of study]

Fundamental groups of pushouts

sets of loops

at some point

[subject of study]

Fundamental groups of pushouts

sets of loops

at some point

two spaces

glued together

Ways to travel from α to α

(circle)

Ways to travel from α to α

(circle)

Ways to travel from α to α

(circle)

Ways to travel★From α to α

Much more if a new path (*) is added

ways to travel from a to a?

ways to travel from α to α ? alternative paths in A and B!

Theorem (drafted)

for any A, B, C, f and g,
fund-group(pushout)
~= ?(??(A), ??(B), C)

Ways to travel from α to b

Theorem (revised)

for any A, B, C, f and g,
fund-groupoid(pushout)
 ~= ?(fund-groupoid(A),
 fund-groupoid(B), C)

?: "seqs of alternative elems"

[p1, p2, ..., pn]
consider four cases:
 A to A, A to B,
 B to A, B to B

going back immediately = not going at all

[p1, p2, ..., pn]
consider four cases:
 A to A, A to B,
 B to A, B to B

each case is a quotient of alternative sequences

next: unify four cases into
 one type family "alt-seq"

next: unify four cases into
 one type family "alt-seq"

show that it respects bridges, ex:

Recipe of Equivalences

- * two functions back and forth
- * round-trips are identity

round-trips are identity due to quotient relation (squashing trivials) 19

Theorem (final)

for any A, B, C, f and g,
fund-groupoid(pushout)
 ~= alt-seq(fund-groupoid(A),
 fund-groupoid(B), C)

(zero pages left before the proofs)

fund-groupoid _-> alt-seqs (all paths)

fund-groupoid _-> alt-seqs (all paths)

Path induction principle: consider only trivial paths

For any point p in pushout find an alt-seq from p to p representing the trivial path at p

fund-groupoid _-> alt-seqs (all paths)

Path induction principle: consider only trivial paths

witnessed by the quotient relation (squashing trivials)

alt-seq -> fund-groupoid just compositions!

alt-seq -> fund-groupoid

just compositions!

alt-seq -> fund-groupoid

just compositions!

grpd -> seqs -> grpd
again by path induction
(similar to "encode")

- seqs -> grpd -> seqs
 induction on sequences
- lemma: encode(decode[p1,p2,...])
 - = p1 :: encode(decode[p2,...])

Seifert-van Kampen

Final Notes

- * Refined version: Can focus on just the set of base points of C covering its components.
- * All mechanized in Agda github.com/HoTT/HoTT-Agda/blob/1.0/Homotopy/VanKampen.agda