The Seifert-van Kampen Theorem in Homotopy Type Theory

$$
\text { [CSL } 2016 \text {] }
$$

* Favonia, Carnegie Mellon University, USA Michael Shulman, University of San Diego, USA

Homotopy Type Theory

Do homotopy theory in type theory Hopf fibrations, Eilenberg-Mac Lane spaces, homotopy groups of spheres, Mayer-Vietoris sequences, Blakers-Massey... [HoTT book; Cavallo 14; Hou (Favonia), Finster, Licata \& Lumsdaine 16; ...]

1. Mechanization
2. Translations to other models synthetic homotopy theory

Every type is an ∞-groupoid

terms

Every type is an ∞-groupoid

Every type is an ∞-groupoid

Every type is an ∞-groupoid

\author{

- terms
 __ paths
 pathe of pathe
}

Every function is a functor

Types and Spaces

A
$a: A$
$f: A \rightarrow B$

C : A \rightarrow Type
Dependent Type
$C(a)$
$p: a=A b$ Identification Path
Space
Point

Fiber

Continuous Mapping

Fibration
[subject of study]

Fundamental groups of pushouts
[subject of study]

Fundamental groups of pushouts

sets of loops
at some point
[subject of study]

Fundamental groups of pushouts

sets of loops
at some point

Fundamental Group

Fundamental Group

Ways to travel
from a to a
stay \square

Fundamental Group

Ways to travel
from a to a

Fundamental Group

Fundamental Group

Ways to travel from a to a (circle)

Here they correspond to integers

Fundamental Group

Ways to travel
from a to a

Much more if a new path (*) is added

Pushout
 two spaces glued together

Pushout
 two spaces glued together

Pushout
 two spaces glued together

Pushout

two spaces glued together

Pushout

two spaces glued together

ways to travel from a to a?

Pushout

two spaces glued together

ways to travel from a to a? alternative paths in A and B !

Theorem (drafted)

for any A, B, C, f and g, fund-group (pushout)

$$
\sim=?(? ?(A), \quad ? ?(B), C)
$$

??: paths between any two points
?: "seqs of alternative elems"

Fundamental Groupoid

Ways to travel from a to b

Theorem (revised)

for any A, B, C, f and g,
fund-groupoid(pushout)

> ~= ?(fund-groupoid(A),
fund-groupoid(B), C)
?: "seqs of alternative elems"

Alternative Sequences

[p1, p2, ..., pn]
consider four cases:
A to A, A to B,
B to A, B to B

Alternative Sequences

going back immediately = not going at all

Alternative Sequences

$$
\begin{aligned}
& \text { [p1, p2, } . ., \mathrm{pn}] \\
& \text { consider four cases: } \\
& A \text { to } A, A \text { to } B, \\
& B \text { to } A, B \text { to } B
\end{aligned}
$$

each case is a quotient
of alternative sequences

Alternative Sequences

next: unify four cases into
one type family "alt-seq"

Alternative Sequences

next: unify four cases into one type family "alt-seq"
show that it respects bridges, ex:

alt-seq a $(\mathrm{f} c)$ ~= alt-seq a (g c)

Recipe of Equivalences

* two functions back and forth * round-trips are identity

$$
\left\{D_{\square}\right\}-=\{-\square\}
$$

$$
\{, \square\}-=\{-\square\}
$$

$$
\{, \square\}-=\{-\square\}
$$

round-trips are identity due to quotient relation (squashing trivials)

Alternative Sequences

Theorem (final)

for any A, B, C, f and g,
fund-groupoid(pushout)

$$
\begin{aligned}
& \sim=\text { alt-seq(fund-groupoid(A), } \\
& \text { fund-groupoid(B), C) }
\end{aligned}
$$

(zero pages left before the proofs)

fund-groupoid $\underset{\text { encode }}{\rightarrow}$ alt-seqs (all paths)

fund-groupoid $->$ alt-seqs (all paths)

Path induction principle: consider only trivial paths

For any point p in pushout find an alt-seq from p to p representing the trivial path at p

fund-groupoid $->$ alt-seqs (all paths)

Path induction principle: consider only trivial paths

next: respecting bridges

25

in A
(after applying the diagonal in the commuting square)

witnessed by the quotient relation (squashing trivials)

alt-seq $\underset{\text { decode }}{\text { - }}$ fund-groupoid just compositions!

alt-seq $\underset{\text { decode }}{\text { - }}$ fund-groupoid just compositions!

grpd $\underset{\text { encode }}{->}$ seqs $\underset{\text { decode }}{->}$ grpd

$$
\begin{aligned}
& \text { again by path induction } \\
& \text { (similar to "encode") }
\end{aligned}
$$

alt-seq $\underset{\text { decode }}{->}$ fund-groupoid just compositions!

grpd $\underset{\text { encode }}{->}$ seqs $\underset{\text { decode }}{->} \mathbf{g r p d}$ again by path induction (similar to "encode")
seqs $\underset{\text { decode }}{->}$ grpd $\underset{\text { encode }}{->}$ seqs induction on sequences
lemma: encode(decode[p1,p2,...])

$$
=p 1:: \text { encode(decode[p2,...]) }
$$

Seifert-van Kampen

for any A, B, C, f and g,
fund-groupoid(pushout)

$$
\begin{array}{r}
\sim=\text { alt-seq(fund-groupoid(A), } \\
\text { fund-groupoid(B), C) }
\end{array}
$$

Final Notes

* Refined version: Can focus on just the set of base points of C covering its components.
* All mechanized in Agda
github.com/HoTT/HoTT-Agda/blob/1.0/Homotopy/VanKampen.agda

