Polymorphism

FAVONIA \mid NICK BENTON \mid BOB HARPER

Polymorphism

Bynamic Typing
FAVONIA \mid NICK BENTON \mid BOB HARPER

Is this the shortest PLunch?

Bob and I wanted to make homework

Is this the shortest PLunch?

Bob and I wanted to make homework and so we had a JFP Theoretical Pearl.

System F to PCF

System F to PCF

$$
\forall t . t \rightarrow t \quad \rightarrow \mathrm{dyn} \rightharpoonup \mathrm{dyn}
$$

System F to PCF

$$
\forall t . t \rightarrow t \quad \rightarrow \quad \text { dyn } \rightharpoonup \mathrm{dyn}
$$

But keep other types!

nat \rightarrow nat \rightarrow nat \rightarrow nat
λx :nat. $x \rightarrow \lambda x$:nat. x

System F to PCF

System F source

```
\tau::=t nat | }\mp@subsup{\tau}{1}{}->\mp@subsup{\tau}{2}{}|\forallt.
```


System F to PCF

System F ㄸume

$\tau::=t \mid$ nat $\left|\tau_{1} \rightarrow \tau_{2}\right| \forall t . \tau$
$e::=x|\mathrm{z}| \operatorname{suc}(e)\left|\operatorname{ifz}\left(e ; e_{0} ; x . e_{1}\right)\right| \lambda x: \tau . e\left|e_{1} e_{2}\right|$ 伴.e $\mid e[\tau]$
PCF with dyn target
$\sigma::=$ nat $|\operatorname{dyn}| \sigma_{1} \rightharpoonup \sigma_{2}$
$d::=x|\cdots| \operatorname{cast}[c](d)|\operatorname{new}[c](d)| \cdots$
$c::=$ num \mid fun

System F to PCF

System F ㄸume

$$
\begin{aligned}
& \tau::=t|\operatorname{nat}| \tau_{1} \rightarrow \tau_{2} \mid \forall t . \tau \\
& e::=x|z| \operatorname{suc}(e)\left|\operatorname{ifz}\left(e ; e_{0} ; x . e_{1}\right)\right| \lambda x: \tau . e\left|e_{1} e_{2}\right| \Lambda t . e \mid e[\tau]
\end{aligned}
$$

PCF with dyn שarces

$$
\sigma: \because=\text { nat } \mid \text { dyn } \mid \sigma_{1} \rightharpoonup \sigma_{2}
$$

```
                                    new[num](3) : dyn
```

 new[fun] \((f:\) dyn - dyn \():\) dyn
 $d::=x|\cdots| \operatorname{cast}[c](d)|\operatorname{new}[c](d)| \cdots$
$c::=$ num \mid fun

System F to PCF

Keep everything except variables

$$
\begin{aligned}
t^{\dagger} & :=\text { dyn } \\
\text { nat }^{\dagger} & :=\text { nat } \\
\left(\tau_{1} \rightarrow \tau_{2}\right)^{\dagger} & :=\tau_{1}^{\dagger} \rightharpoonup \tau_{2}^{\dagger} \\
(\forall t . \tau)^{\dagger} & :=\tau^{\dagger}
\end{aligned}
$$

System F to PCF

Keep everything except variables

$$
\begin{gathered}
t^{\dagger}:=\text { dyn } \\
\text { nat }^{\dagger}:=\text { nat } \\
\left(\tau_{1} \rightarrow \tau_{2}\right)^{\dagger}:=\tau_{1}^{\dagger} \rightharpoonup \tau_{2}^{\dagger} \\
(\forall t . \tau)^{\dagger}:=\tau^{\dagger} \\
\frac{\Delta, t \text { type } \Gamma \vdash e: \tau \Rightarrow d}{\Delta \Gamma \vdash \Lambda t . e: \forall t . \tau \Rightarrow d} \quad \frac{\Delta \vdash \tau_{2} \text { type } \quad \Delta \Gamma \vdash e: \forall t . \tau_{1} \Rightarrow d}{\Delta \Gamma \vdash e\left[\tau_{2}\right]:\left[\tau_{2} / t\right] \tau_{1} \Rightarrow \mathbf{? ? ?}}
\end{gathered}
$$

Type Application

$$
f: \forall t . t \rightarrow t \xrightarrow{\text { type app }} f[\text { nat }]: \text { nat } \rightarrow \text { nat }
$$

Type Application

Type Application

Type Application

$\lambda x:$ nat.cast $[$ num $]\left(f^{\dagger}(\right.$ new $[$ num $\left.](x))\right)$

Type Application

$$
\begin{aligned}
& f: \forall t . t \rightarrow t \xrightarrow{\text { type app }} f[\tau]: \tau \rightarrow \tau \\
& \\
& f^{\dagger}: \text { dyn } \rightharpoonup \operatorname{dyn} \xrightarrow{?}(f[\tau])^{\dagger}=?: \tau^{\dagger} \rightharpoonup \tau^{\dagger}
\end{aligned}
$$

Type Application

$$
\begin{aligned}
& f: \forall t . t \rightarrow t \xrightarrow{\text { type app }} f[\tau]: \tau \rightarrow \tau \\
& f^{\dagger}: \text { dyn } \rightarrow \text { dyn } \xrightarrow{?}(f[\tau])^{\dagger}=?: \tau^{\dagger} \rightharpoonup \tau^{\dagger}
\end{aligned}
$$

$$
\begin{gathered}
\lambda x: \tau^{\dagger} \cdot j_{\tau^{\dagger}}\left(f^{\dagger}\left(i_{\tau^{\dagger}}(x)\right)\right) \\
i_{\sigma}: \sigma \rightharpoonup \operatorname{dyn} \\
j_{\sigma}: \operatorname{dyn} \rightharpoonup \sigma
\end{gathered}
$$

Embed and Project

$$
\begin{aligned}
i_{\text {nat }}(n) & :=\operatorname{new}[\operatorname{num}](n) \\
i_{\text {dyn }}(d) & :=d \\
i_{\sigma_{1} \rightarrow \sigma_{2}}(f) & :=\operatorname{new}[\text { fun }]\left(\lambda x: \operatorname{dyn} \cdot i_{\sigma_{2}}\left(f\left(j_{\sigma_{1}}(x)\right)\right)\right) \\
j_{\text {nat }}(d) & :=\operatorname{cast}[\text { num }](d) \\
j_{\text {dyn }}(d) & :=d \\
j_{\sigma_{1} \rightarrow \sigma_{2}}(f) & :=\lambda x: \sigma_{1} \cdot j_{\sigma_{2}}\left(\operatorname{cast}[\text { fun }](f)\left(i_{\sigma_{1}}(x)\right)\right)
\end{aligned}
$$

Type Application

$$
\begin{aligned}
& e: \forall t . \tau_{1} \xrightarrow{\text { type app }} e\left[\tau_{2}\right]:\left[\tau_{2} / t\right] \tau_{1} \\
& e^{\dagger}: \tau_{1}^{\dagger} \longrightarrow\left(e\left[\tau_{2}\right]\right)^{\dagger}=?:\left(\left[\tau_{2} / t\right] \tau_{1}\right)^{\dagger}
\end{aligned}
$$

Type Application

Idea: lift the projection to handle arbitrary type operators.

Type Application

$$
\begin{aligned}
& e: \forall t . \tau_{1} \xrightarrow{\text { type app }} e\left[\tau_{2}\right]:\left[\tau_{2} / t\right] \tau_{1} \\
& e^{\dagger}: \tau_{1}^{\dagger} \longrightarrow\left(e\left[\tau_{2}\right]\right)^{\dagger}=?:\left(\left[\tau_{2} / t\right] \tau_{1}\right)^{\dagger}
\end{aligned}
$$

Idea: lift the projection to handle arbitrary type operators.

$$
\begin{aligned}
{[\mathrm{dyn} / O]\left[\tau_{1}\right]_{t} } & =\tau_{1}^{\dagger} \\
{\left[\tau_{2}^{\dagger} / O\right]\left[\tau_{1}\right]_{t} } & =\left(\left[\tau_{2} / t \tau_{1}\right)^{\dagger}\right.
\end{aligned}
$$

Type Application

$$
\begin{aligned}
& e: \forall t . \tau_{1} \xrightarrow{\text { type app }} e\left[\tau_{2}\right]:\left[\tau_{2} / t\right] \tau_{1} \\
& e^{\dagger}: \tau_{1}^{\dagger} \xrightarrow{J_{\left[\tau_{1}\right]_{t}}^{\tau_{2}^{\dagger}}}\left(e\left[\tau_{2}\right]\right)^{\dagger}=?:\left(\left[\tau_{2} / t\right] \tau_{1}\right)^{\dagger}
\end{aligned}
$$

Idea: lift the projection to handle arbitrary type operators.

$$
\begin{gathered}
{[\mathrm{dyn} / O]\left[\tau_{1}\right]_{t}=\tau_{1}^{\dagger}} \\
{\left[\tau_{2}^{\dagger} / O\right]\left[\tau_{1}\right]_{t}=\left(\left[\tau_{2} / t\right] \tau_{1}\right)^{\dagger}} \\
I_{\omega}^{\sigma}:[\sigma / O] \omega \rightharpoonup[\mathrm{dyn} / O] \omega \quad J_{\omega}^{\sigma}:[\mathrm{dyn} / O] \omega \rightharpoonup[\sigma / O] \omega
\end{gathered}
$$

Embed and Project 2.0

$$
\begin{aligned}
{[t]_{t} } & :=0 \\
{[u]_{t} } & :=\text { dyn } \\
{[\text { nat }]_{t} } & :=\text { nat } \\
{\left[\tau_{1} \rightarrow \tau_{2}\right]_{t} } & :=\left[\tau_{1}\right]_{t} \rightarrow\left[\tau_{2}\right]_{t} \\
{\left[\forall u . \tau_{1}\right]_{t} } & :=\left[\tau_{1}\right]_{t}
\end{aligned}
$$

Find all the t !

Embed and Project 2.0

$$
\begin{aligned}
I_{\bigcirc}^{\sigma}(x) & :=i_{\sigma}(x) \\
I_{\text {nat }}^{\sigma}(x) & :=x \\
I_{\text {dyn }}^{\sigma}(x) & :=x \\
I_{\omega_{1}-\omega_{2}}^{\sigma}(f) & :=\lambda x:[\mathrm{dyn} / \bigcirc] \omega_{1} \cdot I_{\omega_{2}}^{\sigma}\left(f\left(J_{\omega_{1}}^{\sigma}(x)\right)\right) \\
J_{\bigcirc}^{\sigma}(x) & :=j_{\sigma}(x) \\
J_{\text {nat }}^{\sigma}(x) & :=x \\
J_{\text {dyn }}^{\sigma}(x) & :=x \\
J_{\omega_{1} \rightarrow \omega_{2}}^{\sigma}(f) & :=\lambda x:[\sigma / \bigcirc] \omega_{1} \cdot J_{\omega_{2}}^{\sigma}\left(f\left(I_{\omega_{1}}^{\sigma}(x)\right)\right)
\end{aligned}
$$

Problem Statement

$$
\frac{\Delta, t \text { type } \Gamma \vdash e: \tau \Rightarrow d}{\Delta \Gamma \vdash \Lambda t . e: \forall t . \tau \Rightarrow d}
$$

$$
\frac{\Delta \vdash \tau_{2} \text { type } \quad \Delta \Gamma \vdash e: \forall t . \tau_{1} \Rightarrow d}{\Delta \Gamma \vdash e\left[\tau_{2}\right]:\left[\tau_{2} / t\right] \tau_{1} \Rightarrow J_{\left[\tau_{1}\right]_{t}}^{\tau_{2}^{+}}(d)}
$$

Problem Statement

$$
\frac{\Delta, t \text { type } \Gamma \vdash e: \tau \Rightarrow d}{\Delta \Gamma \vdash \Lambda t . e: \forall t . \tau \Rightarrow d}
$$

$$
\frac{\Delta \vdash \tau_{2} \text { type } \quad \Delta \Gamma \vdash e: \forall t . \tau_{1} \Rightarrow d}{\Delta \Gamma \vdash e\left[\tau_{2}\right]:\left[\tau_{2} / t\right] \tau_{1} \Rightarrow J_{\left[\tau_{1}\right]_{t}}^{\tau_{2}^{+}}(d)}
$$

(Intended) homework assignment: no run-time errors

Problem Statement

$$
\frac{\Delta, t \text { type } \Gamma \vdash e: \tau \Rightarrow d}{\Delta \Gamma \vdash \Lambda t . e: \forall t . \tau \Rightarrow d}
$$

$$
\frac{\Delta \vdash \tau_{2} \text { type } \quad \Delta \Gamma \vdash e: \forall t . \tau_{1} \Rightarrow d}{\Delta \Gamma \vdash e\left[\tau_{2}\right]:\left[\tau_{2} / t\right] \tau_{1} \Rightarrow J_{\left[\tau_{1}\right]_{t}}^{\tau_{2}^{+}}(d)}
$$

(Intended) homework assignment: no run-time errors
Igarashi, Pierce and Wadler [2001] showed correctness in a minimal core calculus for Java with generics, relying on the class table.

Problem Statement

$\frac{\Delta, t \text { type } \Gamma \vdash e: \tau \Rightarrow d}{\Delta \Gamma \vdash \Lambda t . e: \forall t . \tau \Rightarrow d}$

$$
\frac{\Delta \vdash \tau_{2} \text { type } \quad \Delta \Gamma \vdash e: \forall t . \tau_{1} \Rightarrow d}{\Delta \Gamma \vdash e\left[\tau_{2}\right]:\left[\tau_{2} / t\right] \tau_{1} \Rightarrow J_{\left[\tau_{1}\right]_{t}}^{\tau_{2}^{+}}(d)}
$$

(Intended) homework assignment: no run-time errors
Igarashi, Pierce and Wadler [2001] showed correctness in a minimal core calculus for Java with generics, relying on the class table.
Our difficulty: composition of types

$e \sim_{\tau} d[\eta: \delta \leftrightarrow \rho]$

 System F relations for type variables PCF that respect obs. equiv. typesSystem F terms
$-\vdash e: \hat{\delta}(\tau)$ terms

$$
\cdot \vdash d: \tau^{\dagger}
$$

- $e \sim_{t} d[\eta: \delta \leftrightarrow \rho]:=\eta(t)\left(e, j_{\rho(t)}(d)\right)$
- $e \sim_{\forall t . \tau_{1}} d[\eta: \delta \leftrightarrow \rho]:=\forall \tau_{2}, \sigma_{2}, \mathcal{R}_{2}$ such that $\mathcal{R}_{2}: \tau_{2} \leftrightarrow \sigma_{2}$, $e\left[\tau_{2}\right] \sim_{\tau_{1}} d\left[\eta \otimes\left(t \hookrightarrow \mathcal{R}_{2}\right): \delta \otimes\left(t \hookrightarrow \tau_{2}\right) \leftrightarrow \rho \otimes\left(t \hookrightarrow \sigma_{2}\right)\right]$ no J here!

Logical Relation Recipe

STEP I weakening and exchange
STEP 2 the relation itself respects obs. equiv. (and the properties you care)
STEP 3 composition of types/relations
STEP 4 fundamental lemma!

$$
\begin{gathered}
\Delta \Gamma \vdash e: \tau \Rightarrow d \\
\gamma \sim_{\Gamma} \xi[\eta: \delta \leftrightarrow \rho] \\
\hat{\gamma}(\hat{\delta}(e)) \sim_{\tau} \hat{\xi}(d)[\eta: \delta \leftrightarrow \rho]
\end{gathered}
$$

Logical Relation Recipe

STEP I weakening and exchange
STEP 2 the relation itself respects obs. equiv. (and the properties you care)
STEP 3 composition of types/relations?
STEP 4 fundamental lemma!

$$
\begin{gathered}
\Delta \Gamma \vdash e: \tau \Rightarrow d \\
\gamma \sim_{\Gamma} \xi[\eta: \delta \leftrightarrow \rho] \\
\hat{\gamma}(\hat{\delta}(e)) \sim_{\tau} \hat{\xi}(d)[\eta: \delta \leftrightarrow \rho]
\end{gathered}
$$

Compositionality

$$
\left[\tau_{2} / t\right] \tau_{1}
$$

Compositionality

$\left[\tau_{2} / t\right] \tau_{1}$

$$
\mathcal{R}_{2}(e, d):=e \sim_{\tau_{2}} d[\eta: \delta \leftrightarrow \rho]
$$

1. $e \sim_{\tau_{1}} d\left[\eta \otimes\left(t \hookrightarrow \mathcal{R}_{2}\right): \delta \otimes\left(t \hookrightarrow \hat{\delta}\left(\tau_{2}\right)\right) \leftrightarrow \rho \otimes\left(t \hookrightarrow \tau_{2}^{\dagger}\right)\right]$ implies $e \sim_{\left[\tau_{2} / t\right] \tau_{1}} J_{\left[\tau_{1}\right]_{t}}^{\tau_{2}^{\dagger}}(d)[\eta: \delta \leftrightarrow \rho]$
2. $e \sim_{\left[\tau_{2} / t\right] \tau_{1}} d[\eta: \delta \leftrightarrow \rho] \quad$ implies

$$
e \sim_{\tau_{1}} I_{\left[\tau_{1}\right]_{t}}^{\tau_{2}^{\dagger}}(d)\left[\eta \otimes\left(t \hookrightarrow \mathcal{R}_{2}\right): \delta \otimes\left(t \hookrightarrow \hat{\delta}\left(\tau_{2}\right)\right) \leftrightarrow \rho \otimes\left(t \hookrightarrow \tau_{2}^{\dagger}\right)\right]
$$

Compositionality

$$
\left[\tau_{2} / t\right] \tau_{1}
$$

$$
\mathcal{R}_{2}(e, d):=e \sim_{\tau_{2}} d[\eta: \delta \leftrightarrow \rho]
$$

1. $e \sim_{\tau_{1}} d\left[\eta \otimes\left(t \hookrightarrow \mathcal{R}_{2}\right): \delta \otimes\left(t \hookrightarrow \hat{\delta}\left(\tau_{2}\right)\right) \leftrightarrow \rho \otimes\left(t \hookrightarrow \tau_{2}^{\dagger}\right)\right]$
implies $e \sim_{\left[\tau_{2} / t\right] \tau_{1}} J_{\left[\tau_{1}\right]_{t}}^{\tau_{2}^{\dagger}}(d)[\eta: \delta \leftrightarrow \rho]$
2. $e \sim_{\left[\tau_{2} / t\right] \tau_{1}} d[\eta: \delta \leftrightarrow \rho] \quad$ implies

not so clear

 if it's "iff."$e \sim_{\tau_{1}} I_{\left[\tau_{1}\right]_{t}}^{\tau_{2}^{\dagger}}(d)\left[\eta \otimes\left(t \hookrightarrow \mathcal{R}_{2}\right): \delta \otimes\left(t \hookrightarrow \hat{\delta}\left(\tau_{2}\right)\right) \leftrightarrow \rho \otimes\left(t \hookrightarrow \tau_{2}^{\dagger}\right)\right]$

FAILED ATTEMPT. Compositionality

$$
e_{1} \sim_{\left[\tau^{\prime} / t\right] \tau_{1} \rightarrow\left[\tau^{\prime} / t\right] \tau_{2}} J\left(d_{1}\right) \text { implies }(?) e_{1} \sim_{\tau_{1} \rightarrow \tau_{2}} d_{1}
$$

FAILED ATTEMPT. Compositionality

$e_{1} \sim_{\left[\tau^{\prime} / t\right] \tau_{1} \rightarrow\left[\tau^{\prime} / t\right] \tau_{2}} J\left(d_{1}\right)$ implies $(?) e_{1} \sim_{\tau_{1} \rightarrow \tau_{2}} d_{1}$
Assume

$$
e_{2} \sim_{\tau_{1}} d_{2}
$$

We want

$$
e_{1} e_{2} \sim_{\tau_{2}} d_{1} d_{2}
$$

FAILED ATTEMPT. Compositionality

$e_{1} \sim_{\left[\tau^{\prime} / t\right] \tau_{1} \rightarrow\left[\tau^{\prime} / t\right] \tau_{2}} J\left(d_{1}\right)$ implies $(?) e_{1} \sim_{\tau_{1} \rightarrow \tau_{2}} d_{1}$
Assume

$$
e_{2} \sim_{\tau_{1}} d_{2}
$$

We want

$$
e_{1} e_{2} \sim_{\tau_{2}} d_{1} d_{2}
$$

We have

$$
e_{2} \sim_{\left[\tau^{\prime} / t\right] \tau_{1}} J\left(d_{2}\right)
$$

FAILED ATTEMPT Compositionality

$e_{1} \sim_{\left[\tau^{\prime} / t\right] \tau_{1} \rightarrow\left[\tau^{\prime} / t\right] \tau_{2}} J\left(d_{1}\right)$ implies(?) $e_{1} \sim_{\tau_{1} \rightarrow \tau_{2}} d_{1}$
Assume

$$
e_{2} \sim_{\tau_{1}} d_{2}
$$

We want

$$
e_{1} e_{2} \sim_{\tau_{2}} d_{1} d_{2}
$$

We have

$$
\begin{aligned}
& e_{2} \sim_{\left[\tau^{\prime} / t\right] \tau_{1}} J\left(d_{2}\right) \\
& e_{1} e_{2} \sim_{\left[\tau^{\prime} / t\right] \tau_{2}} J\left(d_{1}\right) J\left(d_{2}\right) \cong J\left(d_{1}\left(I\left(J\left(d_{2}\right)\right)\right)\right)
\end{aligned}
$$

FAILED ATTEMPT. Compositionality

$e_{1} \sim_{\left[\tau^{\prime} / t\right] \tau_{1} \rightarrow\left[\tau^{\prime} / t\right] \tau_{2}} J\left(d_{1}\right)$ implies(?) $e_{1} \sim_{\tau_{1} \rightarrow \tau_{2}} d_{1}$
Assume

$$
e_{2} \sim_{\tau_{1}} d_{2}
$$

We want

$$
e_{1} e_{2} \sim_{\tau_{2}} d_{1} d_{2}
$$

We have

$$
\begin{aligned}
e_{2} & \sim_{\left[\tau^{\prime} / t\right] \tau_{1}} J\left(d_{2}\right) \\
e_{1} e_{2} & \sim_{\left[\tau^{\prime} / t\right] \tau_{2}} J\left(d_{1}\right) J\left(d_{2}\right) \cong J\left(d_{1}\left(I\left(J\left(d_{2}\right)\right)\right)\right) \\
e_{1} e_{2} & \sim_{\tau_{2}} d_{1}\left(I\left(J\left(d_{2}\right)\right)\right)
\end{aligned}
$$

Logical Relation Recipe

STEP I weakening and exchange
STEP 2 the relation itself respects obs. equiv. (and the properties you care)
STEP 3 quasi-composition of types/relations
STEP 4 fundamental lemma!
Thus, compiled programs give the same numbers!
(no run-time errors)

Concluding Notes

Concluding Notes

A nice trick to deal with embedding/projection!

Concluding Notes

A nice trick to deal with embedding/projection!
We used refinements to make $I\left(J\left(d_{2}\right)\right) \cong d_{2}$ but rejected by POPL. :-(

Concluding Notes

A nice trick to deal with embedding/projection!
We used refinements to make $I\left(J\left(d_{2}\right)\right) \cong d_{2}$ but rejected by POPL. :-(

We have 3 different proofs with different setups.

Concluding Notes

A nice trick to deal with embedding/projection!
We used refinements to make $I\left(J\left(d_{2}\right)\right) \cong d_{2}$ but rejected by POPL. :-(

We have 3 different proofs with different setups.
Thunks to preserve values: $(\forall t . \tau)^{\dagger}:=$ unit $\rightharpoonup \tau^{\dagger}$

Concluding Notes

A nice trick to deal with embedding/projection!
We used refinements to make $I\left(J\left(d_{2}\right)\right) \cong d_{2}$ but rejected by POPL. :-(

We have 3 different proofs with different setups.
Thunks to preserve values: $(\forall t . \tau)^{\dagger}:=$ unit $\rightharpoonup \tau^{\dagger}$
You can find open problems by TAing!

