

cubes +) composition

cubical TT

major difficulty: composition for univalent universes

null compositions = no walls

*read Guillaume Brunerie's thesis

	P		Ę	<	1	2		٢]	2		۲I	Κ.	2	(τ	9	5	τ	5		0	4		d])		d		K)		d	L)))
i		-	I))))))))))))]	I)))))))))))]))))))))))))]	I)	I)))
))))]))))))]))
])])])])))))])]])
])])])])])))	[]]))
]))])]))))]])]])
])])])])))))])];)
])])])]))))])]])
]))])])]))))])]])
]))])])]))))])];)
])])])])])))	[)])]])
])))])]))))])];)
])))])]))))]))

2019.03.04-cubicaltt-fbdb422ada0287dbfc7b097c4a9355ed501be6e6-stack-lts9.5-brunerie2-brunerie_opt-2.output.gz

nullable compositions

not covering every corner

> not "true" under double negation

not "true" under some closed substitutions

kill nullable compositions!

Plan A **} reduces to floor if null?**

Plan A **} reduces to floor if null?**

difficult with univalence keyword: regularity

Plan B

ban nullable compositions?

Plan B

ban nullable compositions?

but universes need them in current constructions

Plan C a different composition based on non-nullable ones with a different set of equations to avoid regularity

Plan C a different composition based on non-nullable ones with a different set of equations to avoid regularity method 1: decision tree method 2: reflection no general construction yet

i:IHM:A

i:IHM:A

i:I,j:I,k:IHM:A

method 1: decision tree $[r_{0} = r_{0}; r_{1} = r_{1}; ...]$

method 1: decision tree neocomp $M \begin{bmatrix} r_{0} = r_{0}^{*} \leftrightarrow N_{0}, \\ r_{1}^{*} = r_{1}^{*} \leftrightarrow N_{1}, \end{bmatrix}$

See [AFH] and/or Carlo's thesis

method 1: decision tree neocomp $M \begin{bmatrix} r_{0} = r_{0}^{*} \hookrightarrow N_{0}, \\ r_{1}^{*} = r_{1}^{*} \hookrightarrow N_{1}, \end{bmatrix}$

 $\begin{array}{c} \text{comp } M \left[\begin{matrix} r_{0} = 0 \leftrightarrow \text{comp } M \left[\begin{matrix} r_{0}' = 0 \leftrightarrow N_{0}, \begin{matrix} r_{0}' = 1 \leftrightarrow \text{neocomp } \dots \end{matrix} \right] \\ & \begin{matrix} r_{0} = 1 \leftrightarrow \text{comp } M \left[\begin{matrix} r_{0}' = 1 \leftrightarrow N_{0}, \begin{matrix} r_{0}' = 0 \leftrightarrow \text{neocomp } \dots \end{matrix} \right] \\ & \begin{matrix} r_{0} = r_{0}' \leftrightarrow N_{0}, \begin{matrix} r_{1}' = r_{1}' \leftrightarrow N_{1}, \dots \end{matrix} \right] \end{array}$

See [AFH] and/or Carlo's thesis

See [AFH] and/or Carlo's thesis

neocomp M [] = **M**

 $\begin{array}{c} \textbf{comp } M \begin{bmatrix} l_{0}^{n} = 0 \leftrightarrow \textbf{comp } M \begin{bmatrix} l_{0}^{n} = 0 \leftrightarrow \textbf{N}_{0}, l_{0}^{n} = 1 \leftrightarrow \textbf{neocomp } ... \end{bmatrix} \\ l_{0}^{n} = 1 \leftrightarrow \textbf{comp } M \begin{bmatrix} l_{0}^{n} = 1 \leftrightarrow \textbf{N}_{0}, l_{0}^{n} = 0 \leftrightarrow \textbf{neocomp } ... \end{bmatrix} \\ l_{0}^{n} = l_{0}^{n} \leftrightarrow \textbf{N}_{0}, l_{1}^{n} = l_{1}^{n} \leftrightarrow \textbf{N}_{1}, ... \end{bmatrix}$

method 1: decision tree neocomp $M \begin{bmatrix} r_{1} = r_{2}^{*} \leftrightarrow N_{2}, \\ r_{1} = r_{1}^{*} \leftrightarrow N_{1}, \end{bmatrix}$

method 1: decision tree neocomp $M \begin{bmatrix} l_{0}^{*} = l_{0}^{*} \leftrightarrow N_{0}, \\ l_{1}^{*} = l_{1}^{*} \leftrightarrow N_{1}, \end{bmatrix}$

limitation: the way/order to check dimension expressions needs to respect all equalities (e.g., subst.)

method 1: decision tree variants of [AFH]-style composition

- D removal of duplicate walls removal of inconsistent walls
- **P** permutation of walls
- S symmetry of wall constraints σ symmetry for non-diagonals only

method 1: decision tree variants of [AFH]-style composition

- D removal of duplicate walls removal of inconsistent walls
- **P** permutation of walls
- Symmetry of wall constraints σ symmetry for non-diagonals only

unsolved cases: -P+S

(no permutation, but with symmetry)

method 1: decision tree

[AFH]-style + conjunctions $l_{0}^{*} = l_{0}^{*} \land l_{1}^{*} = l_{1}^{*}$

method 1: decision tree

[AFH]-style + conjunctions $I_{\alpha}^{c} = I_{\alpha}^{c'} \land I_{\alpha}^{c} = I_{\alpha}^{c'}$ trickier with +I how about

r=0 / r=1

method 1: decision tree [AFH]-style + conjunctions $h = h' \wedge h = h'$ trickier with + how about

now about ド=ロハド=1

solved case by case [AFH], research notes, ...

method 2: reflection

[CCHM]-style composition

method 2: reflection [CCHM]-style composition

make intervals
richer so that
 f(r)=(r=1)
 is surjective

method 2: reflection neocomp $M [r=1 \leftrightarrow N]$

method 2: reflection neocomp $M [r=1 \leftrightarrow N]$

 $\begin{array}{c} \text{comp } M & [r=1 \leftrightarrow N \\ r=0 \leftrightarrow M \end{array} \end{array}$

method 2: reflection neocomp $M [r=1 \leftrightarrow N]$

 $\begin{array}{c} \text{comp } M \begin{bmatrix} r = 1 \leftrightarrow N \\ r = 0 \leftrightarrow M \end{bmatrix} \end{array}$

used in Cubical Agda

Plan C a different composition based on non-nullable ones with a different set of equations to avoid regularity

but, is it worth it?

none works for unknown cofibrations

none works for unknown cofibrations

def mycom/fun (A : I → type) (B : I → type) (com/A : (r : I) (φ : F) (p : (i : I) (_ : [i=r ∨ φ] (com/B : (r : I) (φ : F) (p : (i : I) (_ : [i=r ∨ φ] (r : I) (φ : F) (p : (i : I) (_ : [i=r ∨ φ]) (_ : A

we can quantify over cofibrations in cooltt no known way to kill nullable compositions

general theory?

general theory?

build univalent Kan universes with only these cofibrations $\{\varphi | \neg \neg [\varphi]\}$

still very open

further reading

[Angiuli] thesis

Computational Semantics of Cartesian Cubical Type Theory

[VMA]

Cubical Agda: a dependently typed programming language with univalence and higher inductive types