
Universe
Polymorphism

An Order-Theoretic Analysis of

Favonia (me), Carlo Angiuli, Reed Mullanix

id : ∀a . a → a
Id Function

any type

id : ∀a . a → a

id : (A:U) → A → A

Id Function

Id Function in Dependent Type Theory
with U, the universe, the type of types

any type
id(U) can't work because U can't be in U

id : ∀a . a → a

id : (A:U) → A → A

Id Function

Id Function in Dependent Type Theory
with U, the universe, the type of types

any type

any type...
including U

id(U) can't work because U can't be in U

id+(U+) can't work because U+ can't be in U+

id : ∀a . a → a

id : (A:U) → A → A

id+ : (A:U+) → A → A

Id Function

Id Function in Dependent Type Theory
with U, the universe, the type of types

id : (l : Level) → (A:Ul) → A → A
any type
at level l

any level

Agda, Lean

id : (l : Level) → (A:Ul) → A → A
any type
at level l

any level

Agda, Lean

id : (A:U?) → A → A
system figuring levels out

Coq, LEGO, Idris 1

id : (l : Level) → (A:Ul) → A → A
any type
at level l

any level

Agda, Lean

id : (A:U?) → A → A
system figuring levels out

Coq, LEGO, Idris 1
universe constraint Ua < Ub

id : (A:Ub) → A → A

Matita

Crude but Effective Stratification
by Conor McBride

So trivial to implement
Works well in practice

Theorem: This is also the most general*****

Crude but Effective Stratification
id : (A:U0) → A → A

id⇑n : (A:Un) → A → A

by Conor McBride

id⇑1(U0) works!

Crude but Effective Stratification
id : (A:U0) → A → A

id⇑n : (A:Un) → A → A

by Conor McBride

This design is also the most general*****
id⇑1(U0) works!

Universes in Type Theory
A : U <=> A is a type
If A : U and B : U, then A × B : U, A + B : U, ...
U0 : U1 : U2 ...
If A : Ui then A : Ui+1

Universes in Cool Type Theory
A : U <=> A is a type
If A : U and B : U, then A × B : U, A + B : U, ...
U0 : U1 : U2 ... Ui : Uj whenever i < j
If A : Ui then A : Ui+1 If A : Ui then A : Uj whenever i <= j

Levels can be any partially-ordered set

id(U-1) already worked
without polymorphism

“(A : Ua) → (B : Ub) → ... whenever a < b”
is equivalent to “(A : U0) → (B : U1) → ...”

Cool Universe Levels

Natural numbers

Integers Rational numbers
··· < -2 < -1 < 0 < 1 < 2 < ··· ··· < 0 < ··· < 1 < ···

(boring)

L-type theory
well-typed terms e

well-typed terms e*
L*-type theory

L-type theory
well-typed terms e

well-typed terms e*
L*-type theory

preserving <

L-type theory
well-typed terms e

well-typed terms e*
L*-type theory

preserving < StrictOrder
posets with

<-preserving maps

category

Universe Polymorphism
Levels with variables

posets with
<-preserving maps

= Monads on StrictOrder

Universe Polymorphism
Levels with variables

= Monads on StrictOrder
Theorem: You can embed any monad

on StrictOrder into McBride's scheme***

Crude but Effective Stratification
ida : (A:Ua) → A → A As a Monad

Crude but Effective Stratification
ida : (A:Ua) → A → A As a Monad

ida+n : (A:Ua+n) → A → A

Crude but Effective Stratification
ida : (A:Ua) → A → A As a Monad

ida+n : (A:Ua+n) → A → A

every level can be represented by (a,n)

every level can be represented by (a,n)

The McBride Monad
M(Δ) = Δ “×” ℕ
return(a) = (a, 0)
join((a,n1),n2) = (a, n1 + n2)[]

The Generalized McBride Monad
M(Δ) = Δ “×” D
return(a) = (a, ✪)
join((a,n1),n2) = (a, n1 • n2)

Works for any monoid (D, ✪, •) with a partial order <
such that x < y implies z • x < z • y

[]

Crude but Effective and Universal

Universality Theorem
You can embed* any monad on StrictOrder

into the (generalized) McBride monad
by choosing good (D, <, ✪, •)

Reusable OCaml Library
github.com/RedPRL/mugen

Partial Agda Mechanization
github.com/RedPRL/agda-mugen

with many cool (D, <, ✪, •) like “fractals”

“無限 mugen” means “infinity” in Japanese

“algae” for algebraic effects

Reusable OCaml Library
github.com/RedPRL/mugen
with many cool (D, <, ✪, •) like “fractals”

Demo: algaett
github.com/RedPRL/algaett

