Lorarilhmant Program lesting

Polymorithism
 Parametric polymorphism (e.g., ML, Haskell)

Polymorinism
 Parametric polymorphism (e.g., ML, Haskell)

map : (a -> b) -> list(a) -> list(b)

Polymorinism Parametric polymorphism (e.g., ML, Haskell)

map : (a -> b) -> list(a) -> list(b)

$$
\operatorname{map}(* 2)[1,2,3]=[2,4,6]
$$

Polymorihism Same program for different kinds of data

map : (a -> b) -> list(a) -> list(b)
map (not) [true,false] = [false,true]

Polymorinism

Same program for different kinds of data

map : (a -> b) -> list(a) -> list(b)

Question: how can we test this function?

proj : $\left(a^{*} a\right)->a$

map : ($a \rightarrow$ b) $->\operatorname{list}(\mathrm{a})$-> list(b)

Question: how can we test this function?

$$
\text { proj : }(a * a)->a
$$

There are only two possibilities!

$$
\text { proj : }(a * a)->a
$$

There are only two possibilities! $\operatorname{proj}_{1}(\mathrm{x}, \mathrm{y})=\mathrm{x}$ $\operatorname{proj}_{2}(\mathrm{x}, \mathrm{y})=\mathrm{y}$

$$
\text { proj : }(a * a)->a
$$

There are only two possibilities! $\operatorname{proj}_{1}(\mathrm{x}, \mathrm{y})=$ $\operatorname{proj}_{2}(\mathrm{x}, \mathrm{y})=\mathrm{y}$
 proj (true,false) = ?

$$
\operatorname{proj}:(a * a * a)->a
$$

There are only three possibilities!

$$
\begin{gathered}
\operatorname{proj}_{1}(x, y)=x \\
\operatorname{proj}_{2}(x, y)=y \\
\text { proj (true,false) =? }
\end{gathered}
$$

$$
\operatorname{proj}:(a * a * a)->a
$$

There are only three possibilities!

$\operatorname{proj}_{1}(x, y, z)=x$
$\operatorname{proj}_{2}(x, y, z)=y$
$\operatorname{proj}_{3}(x, y, z)=z$

$$
\text { proj : }(a * a * a)->a
$$

There are only three possibilities!

$\operatorname{proj}_{1}(x, y, z)=x$
$\operatorname{proj}_{2}(x, y, z)=y \quad \operatorname{proj}(0,1,2)=$?
$\operatorname{proj}_{3}(x, y, z)=z$

$$
\text { proj : }\left(a^{*} a * \ldots * a\right)->a
$$

There are exactly n possibilities!

$$
\text { proj : }\left(a * a{ }^{*} \ldots{ }^{*} a\right)->a
$$

There are exactly n possibilities! proj ($0,1,2, \ldots, n-1$) = ?

$$
\text { proj : }\left(a^{*} a^{*} \ldots{ }^{*} a\right)->a
$$

There are exactly n possibilities!
 $$
\text { proj }(0,1,2, \ldots, n-1)=?
$$

Any type with n distinct values works

$$
\text { proj : }\left(a^{*} a^{*} \ldots * a\right) \rightarrow a
$$

There are exactly n possibilities!

$$
\log _{a}(a * a * \ldots * a)=\log _{a}\left(a^{n}\right)=n
$$

proj : $\left(a^{*} a^{*} \ldots{ }^{*} a\right)->a$

There are exactly n possibilities!

$\log _{a}(\mathrm{a} * \mathrm{a} * \ldots * \mathrm{a})=\log _{\mathrm{a}}\left(\mathrm{a}^{\mathrm{n}}\right)=\mathrm{n}$ counting elements of type a in the input

$$
f: a(a)->H(a)
$$

$$
f: a(a)->H(a)
$$

one of the good types for testing*

$\log _{a} \alpha(a)$

$f: a(a)->H(a)$

one of the good types for testing*

$\log _{a} \alpha(a)$
testing is still complete ${ }^{* \pi}$

* see our paper for caveats
** the empty type might need to be separately tested

2010 "Testing Polymorphic Properties" by Bernardy, Jansson, and Claessen f : (F(a) -> a) * (G(a) -> K)) -> H(a) (other cases manually massaged into this form)

2017 Liyao Xia wrote a Haskell library roughly based on the above paper (with a logarithm-like operator in its codebase)

2010 "Testing Polymorphic Properties" by Bernardy, Jansson, and Claessen f : (F(a) -> a) * (G(a) -> K)) -> H(a) (other cases manually massaged into this form)

2017

Liyao Xia wrote a Haskell library roughly based on the above paper
(with a logarithm-like operator in its codebase)
Logarithm-like operations have been discovered repeatedly in the literature but no one connected logarithm to testing
e.g., [Abbott et al. 2003; Altenkirch et al. 2015]
$f:(a->a) * a->a$

$$
f:(a->a) * a->a
$$

Suppose the input is the pair (s, x) The output must be $\mathrm{s}(\mathrm{s}(\ldots \mathrm{s}(\mathrm{x}) \ldots))$

$$
f:(a->a) * a->a
$$

Suppose the input is the pair (s, x) The output must be $\mathrm{s}(\mathrm{s}(\ldots \mathrm{s}(\mathrm{x}) \ldots))$

$$
f((+1), 0)=?
$$

this reveals the number of s in its output $\mathrm{s}(\mathrm{s}(\ldots \mathrm{s}(\mathrm{x}) . .)$.
$f:(a->a) * a->a$

$$
f:(a->a) * a->a
$$

$$
\begin{aligned}
& \log _{a}\left(a^{a} * a\right) \\
= & \log _{a}\left(a^{a}\right)+\log _{a}(a) \\
= & a * \log _{a}(a)+1 \\
= & a * 1+1 \\
\simeq & a+1
\end{aligned}
$$

$$
f:(a->a) * a->a
$$

$\log _{a}\left(a^{a} * a\right)$
$=\log _{a}\left(\mathrm{a}^{\mathrm{a}}\right)+\log _{\mathrm{a}}(\mathrm{a})$
$=a * \log _{\mathrm{a}}(\mathrm{a})+1$
$=\mathrm{a} * 1+1$
$\simeq a+1$

Problem: a appears in the logarithm of $\mathrm{a}^{\mathrm{a}} * \mathrm{a}$ indicating recursion

$$
f:(a->a) * a->a
$$

$\log _{a}\left(a^{a} * a\right)$
$=\log _{\mathrm{a}}\left(\mathrm{a}^{\mathrm{a}}\right)+\log _{\mathrm{a}}(\mathrm{a})$
$=\mathrm{a} * \log _{\mathrm{a}}(\mathrm{a})+1$
$=\mathrm{a} * 1+1$
$\simeq a+1$

Problem: a appears in the logarithm of $a^{a} * a$ indicating recursion

Solution: recursive types! μ a.a +1 is the naturals \mathbb{N}

$$
f:(a->a) * a->a
$$

$\log _{a}\left(\mathrm{a}^{\mathrm{a}} * \mathrm{a}\right)$
$=\log _{\mathrm{a}}\left(\mathrm{a}^{\mathrm{a}}\right)+\log _{\mathrm{a}}(\mathrm{a})$
$=\mathrm{a} * \log _{\mathrm{a}}(\mathrm{a})+1$
$=\mathrm{a} * 1+1$
$\simeq a+1$

Problem: a appears in the logarithm of $a^{a} * a$ indicating recursion

Solution: recursive types! $\mu \mathrm{a} . a+1$ is the naturals \mathbb{N} Sufficient for $\mathrm{f}((+1), 0)=$?

f : $a(a)$-> $H(a)$

one of the good types for testing*

$\mu a \cdot \log _{a} \alpha(a)$

a sufficiently large type to describe all possible ways to generate an a-element

Thenrem10:

For any two functions $\mathrm{f}, \mathrm{g}: \alpha(\mathrm{a}) \rightarrow \mathrm{H}(\mathrm{a})$, if they agree on all inputs when type a is instantiated with $\mu \mathrm{a} \cdot \log _{\mathrm{a}} \alpha(\mathrm{a})$ and with the empty type,** then they are exactly the same function!

Invarithm min!

$$
\begin{aligned}
& \log _{a}(a)=1 \\
& \log _{a}(1)=0 \\
& \log _{a}\left(\alpha_{1}(a) * \alpha_{2}(a)\right)=\log _{a}\left(\alpha_{1}(a)\right)+\log _{a}\left(\alpha_{2}(a)\right) \\
& \log _{a}\left(\alpha_{2}(a)^{\alpha_{1}(a)}\right)=\alpha_{1}(a) * \log _{a}\left(\alpha_{2}(a)\right)
\end{aligned}
$$

Incravithm for !ll

$\log _{a}(a)=1$
$\log _{a}(1)=0$
$\log _{a}\left(\alpha_{1}(a) * \alpha_{2}(a)\right)=\log _{a}\left(\alpha_{1}(a)\right)+\log _{a}\left(\alpha_{2}(a)\right)$
$\log _{\mathrm{a}}\left(\alpha_{2}(\mathrm{a})^{\alpha_{1}(\mathrm{a})}\right)=\alpha_{1}(\mathrm{a}) * \log _{\mathrm{a}}\left(\alpha_{2}(\mathrm{a})\right)$
$\log _{a}(b)=\log _{a}(0)=0$
$\log _{a}\left(\alpha_{1}(a)+\alpha_{2}(a)\right)=\log _{a}\left(\alpha_{1}(a)\right)+\log _{a}\left(\alpha_{2}(a)\right)$
$\log _{a}(\mu \mathrm{~b} . .)=.\ldots$
Use over-approximation to cover more types

Incravithm for !ll

$\log _{a}(a)=1$
$\log _{a}(1)=0$
$\log _{a}\left(\alpha_{1}(a) * \alpha_{2}(a)\right)=\log _{a}\left(\alpha_{1}(a)\right)+\log _{a}\left(\alpha_{2}(a)\right)$
$\log _{\mathrm{a}}\left(\alpha_{2}(\mathrm{a})^{\alpha_{1}(\mathrm{a})}\right)=\alpha_{1}(\mathrm{a}) * \log _{\mathrm{a}}\left(\alpha_{2}(\mathrm{a})\right)$
$\log _{a}(b)=\log _{a}(0)=0$
$\log _{a}\left(\alpha_{1}(\mathrm{a})+\alpha_{2}(\mathrm{a})\right)=\log _{\mathrm{a}}\left(\alpha_{1}(\mathrm{a})\right)+\log _{\mathrm{a}}\left(\alpha_{2}(\mathrm{a})\right)$
$\log _{a}(\mu \mathrm{~b} . .)=.\ldots \quad$ How about $\max \left(\log _{a}\left(\alpha_{1}(\mathrm{a})\right), \log _{\mathrm{a}}\left(\alpha_{2}(\mathrm{a})\right)\right)$?
Use over-approximation to cover more types

$$
\text { proj : }(a * a)->a
$$

Theorem: instantiate a with $\mu \mathrm{a} \cdot \log _{\mathrm{a}}(\mathrm{a} * \mathrm{a})=\mu \mathrm{a} \cdot 2 \simeq 2$

$$
\text { proj : }(a * a)->a
$$

Theorem: instantiate a with $\mu \mathrm{a} \cdot \log _{\mathrm{a}}(\mathrm{a} * \mathrm{a})=\mu \mathrm{a} \cdot 2 \simeq 2$

proj (true, true) = ?
proj (true,false) = ?
proj (false,false) = ?
proj (false,true) = ?

$$
\text { proj : }(a * a)->a
$$

Theorem: instantiate a with $\mu \mathrm{a} \cdot \log _{a}(\mathrm{a} * \mathrm{a})=\mu \mathrm{a} \cdot 2 \simeq 2$

 proj (true,false) = ? proj (fatse, false) = fatse proj (false,true) = ?

Logarithm is large enough to index all a-elements

The best tests should contain maximally distinct a-elements
map : ($a->b$) $->\operatorname{list}(a)$-> list(b)

map : (a-> b) -> list(a) -> list(b)

one of the best types and inputs

$$
\begin{gathered}
a=b=\mathbb{N} \\
\operatorname{map} i d_{\mathbb{N}}[0,1, \ldots, n-1]=?
\end{gathered}
$$

intuition: an evil programmer can only do these three things: duplicating, omitting, or permuting elements in the output list the above test case detects all possible deviations map id $[1,1,1,1]$ in comparison is much less useful

Thentrampan

For any two functions $\mathrm{f}, \mathrm{g}: \alpha(\mathrm{a}) \rightarrow \mathrm{H}(\mathrm{a})$, if they agree on optimal inputs with distinct a-elements** when type a is instantiated with $\mu \mathrm{a} \cdot \log _{\mathrm{a}} \alpha(\mathrm{a})$ and on all inputs with the empty type,*** then they are exactly the same function!

Imnlampithitinn

Haskell library: github.com/hawnzug/polycheck automatically specializing types and inputs
Can work with either QuickCheck or SmallCheck

Imn/amentation

apply3

map

takeWhile

zipWith

Implementation
PolyCheck with QuickСнеск
Original QuickCheck

Preliminary experiments showed it requires fewer test cases to find counterexamples

intimeMndz

1. Incorporate information other than the typing e.g., sort cmp list expects cmp to form a total order

FitimeMndz

1. Incorporate information other than the typing e.g., sort cmp list expects cmp to form a total order
2. Extend work to test an API, not just one function

FtimaMnik

1. Incorporate information other than the typing e.g., sort cmp list expects cmp to form a total order
2. Extend work to test an API, not just one function
3. Further optimize the theorem e.g., for length : list(a) -> int the best choice is the unit type, not natural numbers
