Program Testing with Polymorphic Types

Favonia, 202112.06 j.w.w. Zhuyang Wang

POLYMORPHISM Same program for different kinds of data

POLYMORPHISM Same program for different kinds of data

map : (a -> b) -> list(a) -> list(b)

Same program for different kinds of data

map : $(a \rightarrow b) \rightarrow list(a) \rightarrow list(b)$

map (*2) [1,2,3] = [2,4,6]

POVMORDISM Same program for different kinds of data

map : $(a \rightarrow b) \rightarrow list(a) \rightarrow list(b)$

map (not) [true,false] = [false,true]

Polymorphism Same program for different kinds of data

map : (a -> b) -> list(a) -> list(b)

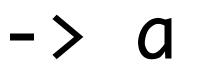
Question: how can we test this function?

map : $(a \rightarrow b) \rightarrow list(a) \rightarrow list(b)$

Question: how can we test this function?

There are only two possibilities!

There are only two possibilities! $proj_1(x,y) = x$ $proj_2(x,y) = y$



There are only two possibilities! $proj_1(x,y) = x$ $proj_2(x,y) = y$ proj (true,false) = ?

proj: (a * a * a) -> a

There are only three possibilities! proj1 (x,y) = x proj2 (x,y) = y proj (true,false) = ?

There are only three possibilities! $proj_1(x,y,z) = x$ $proj_2(x,y,z) = y$ $proj_3(x,y,z) = z$

proj: (a * a * a) -> a

There are only three possibilities! $proj_1(x,y,z) = x$ proj(0,1,2) = ? $proj_2(x,y,z) = y$ $proj_3(x,y,z) = z$

proj: (a * a * a) -> a

There are exactly n possibilities!

There are exactly n possibilities! proj (0,1,2,...,n-1) = ?

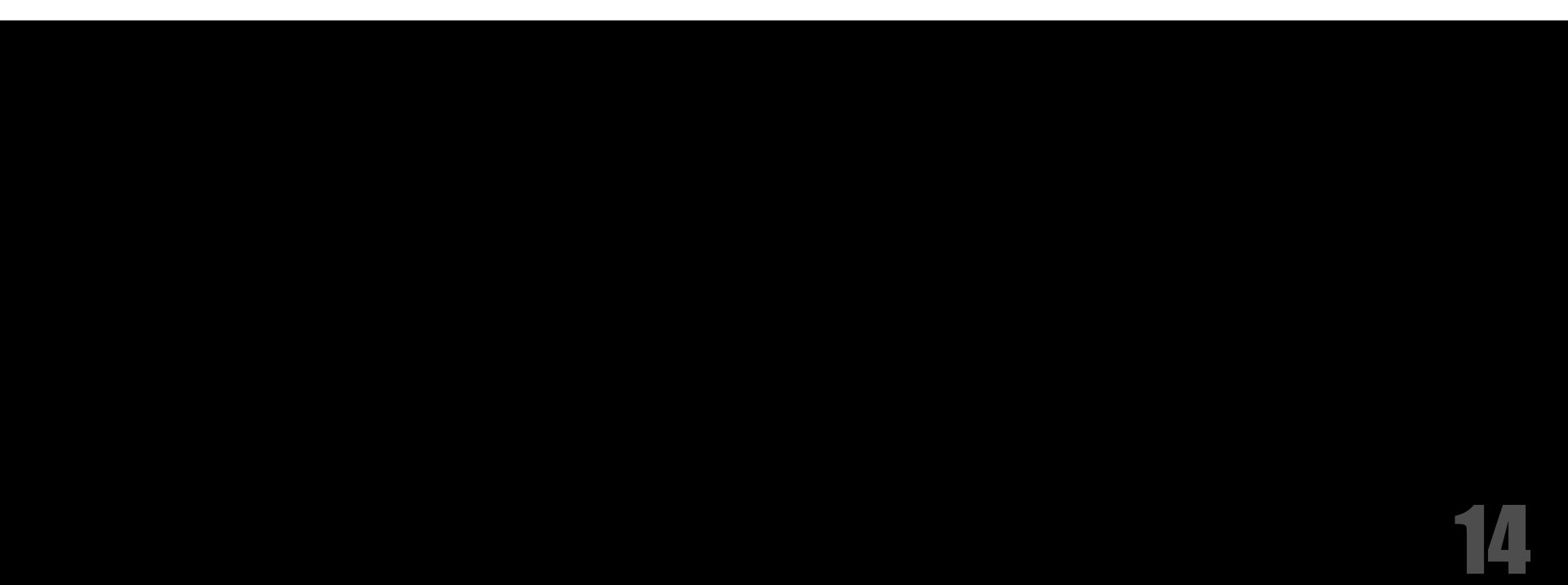
There are exactly **n** possibilities! proj (0,1,2,...,n-1) = ? Any type with n distinct values works

There are exactly n possibilities! $log_a(a * a * ... * a) = log_a(a^n) = n$

There are exactly n possibilities!

 $log_a(a * a * ... * a) = log_a(a^n) = n$ counting elements of type a in the input

f : α(a) -> H(a)



f : α(a) -> H(a)

one of the best types for testing* $log_a \alpha(a)$

* see our paper for caveats

f : α(a) -> H(a)

one of the best types for testing* $log_a (a)$ testing is still complete**

* see our paper for caveats ** the empty type might need to be separately tested

I joined the U

Mentioned this project in my job talk2018I joined the U

Mentioned this project in my job talk2018I joined the U

2019 Zhuyang became my student

Mentioned this project in my job talk **2018** I joined the U

2019 Zhuyang became my student

2021 Paper published at POPL 2022 "Logarithm and Program Testing"

2010 "Testing Polymorphic Properties" by Bernardy, Jansson, and Claessen f: (F(a) -> a) * (G(a) -> K) -> H(a) (other cases manually massaged into this form)

"Testing Polymorphic Properties" 2010 by Bernardy, Jansson, and Claessen f : (F(a) -> a) * (G(a) -> K) -> H(a) (other cases manually massaged into this form)

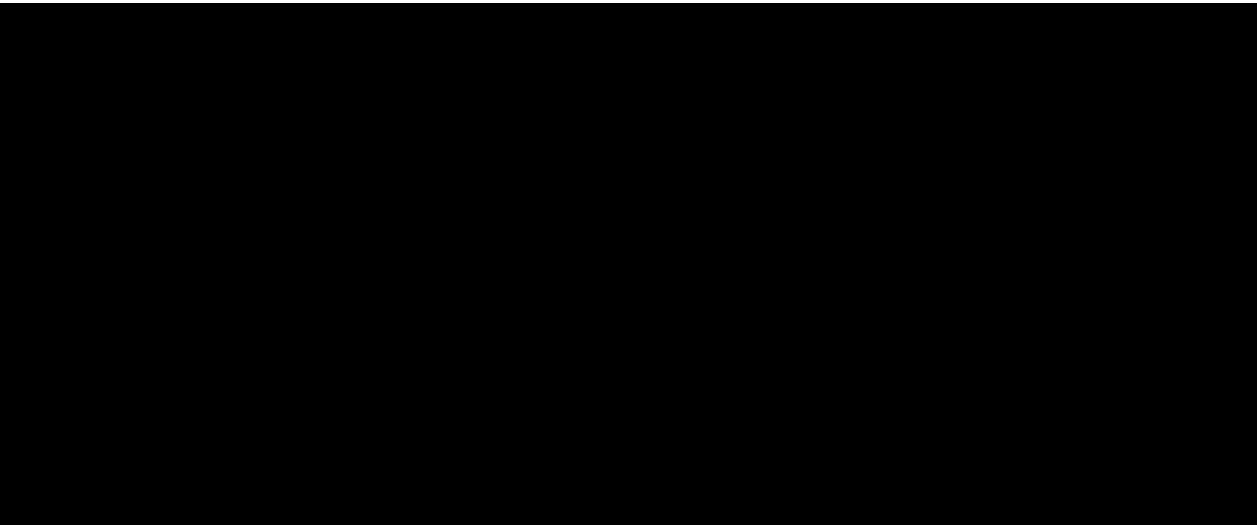
Liyao Xia wrote a Haskell library 2017 roughly based on the above paper (with a logarithm-like operator in its codebase)

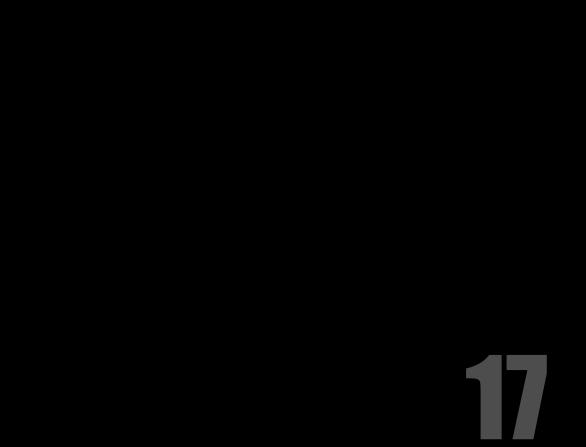
2010 "Testing Polymorphic Properties" by Bernardy, Jansson, and Claessen f: (F(a) -> a) * (G(a) -> K) -> H(a) (other cases manually massaged into this form)

2017 Liyao Xia wrote a Haskell library roughly based on the above paper (with a logarithm-like operator in its codebase)

Logarithm-like operations have been discovered repeatedly in the literature but no one connected logarithm to testing

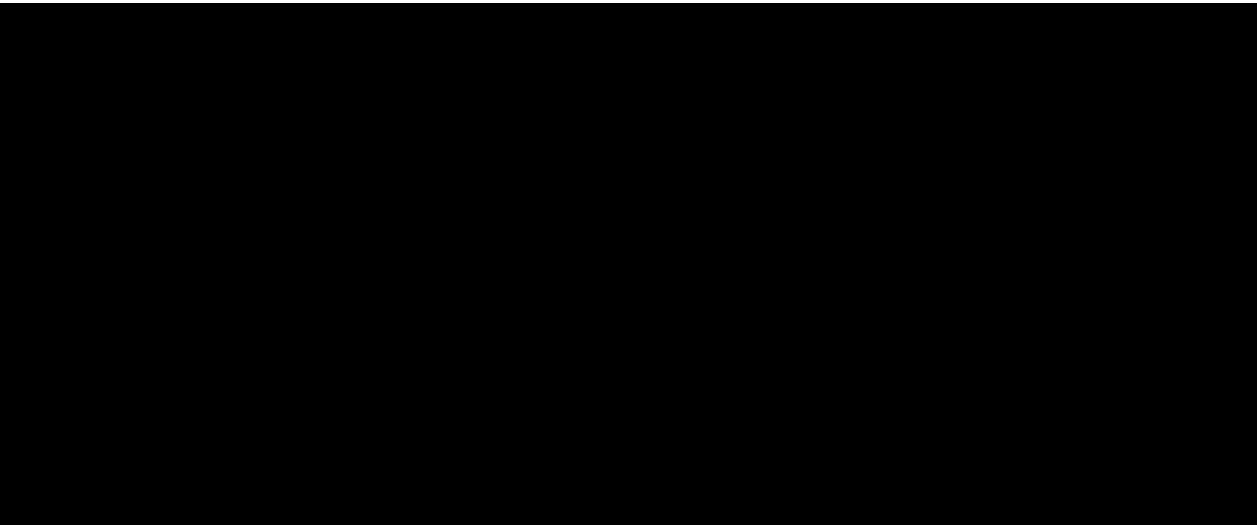
e.g., [Abbott et al. 2003; Altenkirch et al. 2015]





Suppose the input is the pair (s, x) The output must be s(s(...s(x)...))

Suppose the input is the pair (s, x) The output must be s(s(...s(x)...) f((+1), 0) = ?this reveals the number of **s** in its output s(s(...s(x)...))



 $log_a(a^a * a)$ $= \log_a(a^a) + \log_a(a)$ $= a * log_a(a) + 1$ = a * 1 + 1 $\sim a + 1$

 $log_a(a^a * a)$ $= \log_a(a^a) + \log_a(a)$ $= a * log_a(a) + 1$ = a * 1 + 1 $\simeq a + 1$

Problem: a appears in the logarithm of a^a * a indicating recursion

 $log_a(a^a * a)$ $= \log_a(a^a) + \log_a(a)$ $= a * log_a(a) + 1$ = a * 1 + 1 $\simeq a + 1$

Problem: a appears in the logarithm of a^a * a indicating recursion

Solution: recursive types! μ a.a+1 is the naturals **N**

 $log_a(a^a * a)$ $= \log_a(a^a) + \log_a(a)$ $= a * log_a(a) + 1$ = a * 1 + 1 $\simeq a + 1$

indicating recursion

- Problem: a appears in the logarithm of a^a * a
- Solution: recursive types! μ a.a+1 is the naturals **N**
- Sufficient for f((+1), 0) = ?

f : α(a) -> H(a)

one of the best types for testing* ua.logava

a sufficiently large type to describe all possible ways to generate an a-element

* see our paper for remaining caveats

For any two functions f, $g : \alpha(a) \to H(a)$, if they agree on all inputs when type a is instantiated with $\mu a.log_a \alpha(a)$ and with the empty type**, then they are exactly the same function!

* see our paper for omitted conditions** see our paper for why the empty type is needed

$\log_a(a) = 1$ $\log_{a}(1) = 0$ $\log_{a}(\alpha_{1}(a) * \alpha_{2}(a)) = \log_{a}(\alpha_{1}(a)) + \log_{a}(\alpha_{2}(a))$ $\log_{a}(\alpha_{2}(a)^{\alpha_{1}(a)}) = \alpha_{1}(a) * \log_{a}(\alpha_{2}(a))$

$\log_a(a) = 1$ $\log_{a}(1) = 0$ $\log_{a}(\alpha_{1}(a) * \alpha_{2}(a)) = \log_{a}(\alpha_{1}(a)) + \log_{a}(\alpha_{2}(a))$ $\log_{a}(\alpha_{2}(a)^{\alpha_{1}(a)}) = \alpha_{1}(a) * \log_{a}(\alpha_{2}(a))$

 $\log_{a}(b) = \log_{a}(0) = 0$ $\log_a(\alpha_1(a) + \alpha_2(a)) = \log_a(\alpha_1(a)) + \log_a(\alpha_2(a))$ $\log_a(\mu b...) = ...$

Use over-approximation to cover more types

proj: (a * a) -> a

Theorem: instantiate a with $\mu a.log_a(a*a) = \mu a.2 \simeq 2$

proj: (a * a) -> a

Theorem: instantiate a with $\mu a.log_a(a*a) = \mu a.2 \simeq 2$

- proj (true,true) = ?
- proj (true,false) = ?
- proj (false,false) = ?
- proj (false,true) = ?

proj: (a * a) -> a

Theorem: instantiate a with $\mu a.log_a(a*a) = \mu a.2 \simeq 2$

- proj (true, true) = ?
- proj (true,false) = ?
- proj (false, false) = ?
- proj (false,true) = ?

Recall that logarithm is large enough to index all a-elements. The best tests are those containing only distinct a-elements.

map : (a -> b) -> list(a) -> list(b)



one of the best types and inputs $a = b = \mathbb{N}$

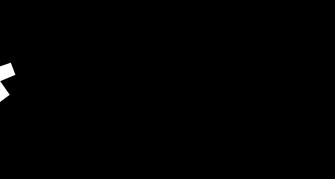
map id_{N} [0,1,..., n-1] = ?

intuition: an evil programmer can only do these three things: duplicating, omitting, or permuting elements in the output list the above test case detects all possible deviations map id [1,1,1,1] in comparison is much less useful

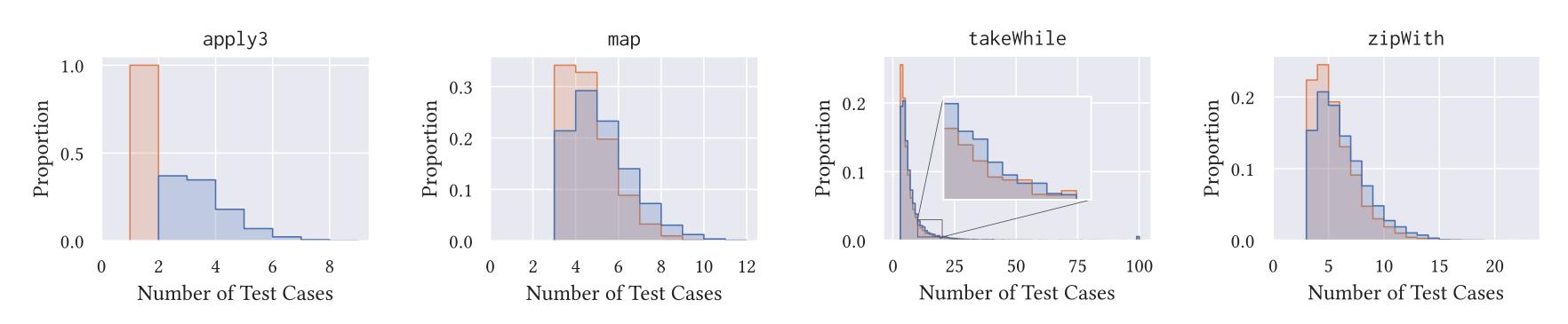
a) -> list(b)

For any two functions f, $g : \alpha(a) \rightarrow H(a)$, if they agree on optimal inputs with distinct a-elements** when type a is instantiated with μ a.log_a α (a) and on all inputs with the empty type***, then they are exactly the same function!

* see our paper for omitted conditions ** see our paper for the precise definition
*** see our paper for why the empty type is needed



Haskell library: github.com/hawnzug/polycheck automatically specializing types and inputs Can work with either QuickCheck or SmallCheck



Implementation

POLYCHECK with QUICKCHECK Original QUICKCHECK

it requires fewer test cases to find counterexamples

Preliminary experiments showed

1. Incorporate information other than the typing e.g., sort cmp list expects cmp to form a total order

- 1. Incorporate information other than the typing e.g., sort cmp list expects cmp to form a total order
- 2. Extend work to test an API, not just one function

- 1. Incorporate information other than the typing e.g., sort cmp list expects cmp to form a total order
- 2. Extend work to test an API, not just one function
- 3. Further optimize the theorem e.g., for length : list(a) -> int the best choice is the unit type, not natural numbers