
1

Favonia, 2021.12.06 j.w.w. Zhuyang Wang

Polymorphic Types
Program Testing with

2

Polymorphism
Same program for different kinds of data

2

Polymorphism
Same program for different kinds of data

map : (a -> b) -> list(a) -> list(b)

2

Polymorphism
Same program for different kinds of data

map : (a -> b) -> list(a) -> list(b)

map (*2) [1,2,3] = [2,4,6]

3

Polymorphism
Same program for different kinds of data

map : (a -> b) -> list(a) -> list(b)

map (not) [true,false] = [false,true]

4

Polymorphism
Same program for different kinds of data

map : (a -> b) -> list(a) -> list(b)

Question: how can we test this function?

5

map : (a -> b) -> list(a) -> list(b)

proj : (a * a) -> a

Question: how can we test this function?

6

proj : (a * a) -> a

Question: how can we test this function?

There are only two possibilities!

7

proj : (a * a) -> a

proj1 (x,y) = x

proj2 (x,y) = y

There are only two possibilities!

7

proj : (a * a) -> a

proj1 (x,y) = x

proj2 (x,y) = y

There are only two possibilities!

proj (true,false) = ?

8

proj : (a * a * a) -> a

proj1 (x,y) = x

proj2 (x,y) = y

There are only three possibilities!

proj (true,false) = ?

9

proj : (a * a * a) -> a

There are only three possibilities!
proj1 (x,y,z) = x

proj2 (x,y,z) = y

proj3 (x,y,z) = z

9

proj : (a * a * a) -> a

There are only three possibilities!
proj1 (x,y,z) = x

proj2 (x,y,z) = y

proj3 (x,y,z) = z

proj (0,1,2) = ?

10

proj : (a * a * ... * a) -> a

There are exactly n possibilities!

10

proj : (a * a * ... * a) -> a

There are exactly n possibilities!

proj (0,1,2,...,n-1) = ?

11

proj : (a * a * ... * a) -> a

There are exactly n possibilities!

Any type with n distinct values works

proj (0,1,2,...,n-1) = ?

12

proj : (a * a * ... * a) -> a

There are exactly n possibilities!

loga(a * a * ... * a) = loga(an) = n

13

proj : (a * a * ... * a) -> a

There are exactly n possibilities!

counting elements of type a in the input
loga(a * a * ... * a) = loga(an) = n

14

f : α(a) -> H(a)

14

f : α(a) -> H(a)

logaα(a)
one of the best types for testing*

* see our paper for caveats

14

f : α(a) -> H(a)

logaα(a)
one of the best types for testing*

testing is still complete**
* see our paper for caveats

** the empty type might need to be separately tested

15

2018 I joined the U

15

2018 I joined the U
Mentioned this project in my job talk

15

2018

2019

I joined the U
Mentioned this project in my job talk

Zhuyang became my student

15

2018

2019

2021

I joined the U
Mentioned this project in my job talk

Zhuyang became my student

Paper published at POPL 2022
“Logarithm and Program Testing”

16

2010 “Testing Polymorphic Properties”
by Bernardy, Jansson, and Claessen
f : (F(a) -> a) * (G(a) -> K) -> H(a)

(other cases manually massaged into this form)

16

2010

2017 Liyao Xia wrote a Haskell library
roughly based on the above paper

“Testing Polymorphic Properties”
by Bernardy, Jansson, and Claessen
f : (F(a) -> a) * (G(a) -> K) -> H(a)

(other cases manually massaged into this form)

(with a logarithm-like operator in its codebase)

16

2010

2017

Logarithm-like operations have been discovered repeatedly
in the literature but no one connected logarithm to testing

Liyao Xia wrote a Haskell library
roughly based on the above paper

“Testing Polymorphic Properties”
by Bernardy, Jansson, and Claessen
f : (F(a) -> a) * (G(a) -> K) -> H(a)

(other cases manually massaged into this form)

(with a logarithm-like operator in its codebase)

e.g., [Abbott et al. 2003; Altenkirch et al. 2015]

17

f : (a -> a) * a -> a

17

f : (a -> a) * a -> a

Suppose the input is the pair (s, x)
The output must be s(s(...s(x)...))

17

f : (a -> a) * a -> a

Suppose the input is the pair (s, x)
The output must be s(s(...s(x)...))

this reveals the number of s
in its output s(s(...s(x)...))

f ((+1), 0) = ?

18

f : (a -> a) * a -> a

18

f : (a -> a) * a -> a

loga(aa * a)
= loga(aa) + loga(a)
= a * loga(a) + 1
= a * 1 + 1
≃ a + 1

18

f : (a -> a) * a -> a

loga(aa * a)
= loga(aa) + loga(a)
= a * loga(a) + 1
= a * 1 + 1
≃ a + 1

Problem: a appears in
the logarithm of aa * a
indicating recursion

18

f : (a -> a) * a -> a

loga(aa * a)
= loga(aa) + loga(a)
= a * loga(a) + 1
= a * 1 + 1
≃ a + 1

Problem: a appears in
the logarithm of aa * a
indicating recursion

Solution: recursive types!
𝜇a.a+1 is the naturals ℕ

18

f : (a -> a) * a -> a

loga(aa * a)
= loga(aa) + loga(a)
= a * loga(a) + 1
= a * 1 + 1
≃ a + 1

Problem: a appears in
the logarithm of aa * a
indicating recursion

Solution: recursive types!
𝜇a.a+1 is the naturals ℕ
Sufficient for f ((+1), 0) = ?

19

f : α(a) -> H(a)

𝜇a.logaα(a)
one of the best types for testing*

a sufficiently large type to describe all
possible ways to generate an a-element

* see our paper for remaining caveats

20

For any two functions f, g : α(a) → H(a), if they
agree on all inputs when type a is instantiated

with 𝜇a.logaα(a) and with the empty type**,
then they are exactly the same function!

* see our paper for omitted conditions
** see our paper for why the empty type is needed

Theorem*

21

loga(a) = 1
loga(1) = 0
loga(α1(a) * α2(a)) = loga(α1(a)) + loga(α2(a))
loga(α2(a)α1(a)) = α1(a) * loga(α2(a))

Logarithm for All

21

loga(a) = 1
loga(1) = 0
loga(α1(a) * α2(a)) = loga(α1(a)) + loga(α2(a))
loga(α2(a)α1(a)) = α1(a) * loga(α2(a))

loga(b) = loga(0) = 0
loga(α1(a) + α2(a)) = loga(α1(a)) + loga(α2(a))
loga(𝜇b...) = ...

Logarithm for All

Use over-approximation to cover more types

22

proj : (a * a) -> a

Theorem: instantiate a with 𝜇a.loga(a*a) = 𝜇a.2 ≃ 2

22

proj : (a * a) -> a

proj (true,true) = ?

proj (true,false) = ?

proj (false,false) = ?

proj (false,true) = ?

Theorem: instantiate a with 𝜇a.loga(a*a) = 𝜇a.2 ≃ 2

23

proj : (a * a) -> a

proj (true,true) = ?

proj (true,false) = ?

proj (false,false) = ?

proj (false,true) = ?

Theorem: instantiate a with 𝜇a.loga(a*a) = 𝜇a.2 ≃ 2

Recall that logarithm is
large enough to index all
a-elements. The best tests
are those containing only
distinct a-elements.

24

map : (a -> b) -> list(a) -> list(b)

24

map : (a -> b) -> list(a) -> list(b)

a = b = ℕ
map idℕ [0,1,...,n-1] = ?

one of the best types and inputs

intuition: an evil programmer can only do these three things:
duplicating, omitting, or permuting elements in the output list

the above test case detects all possible deviations
map id [1,1,1,1] in comparison is much less useful

25

For any two functions f, g : α(a) → H(a), if they
agree on optimal inputs with distinct a-elements**

when type a is instantiated with 𝜇a.logaα(a)
and on all inputs with the empty type***,
then they are exactly the same function!

* see our paper for omitted conditions
** see our paper for the precise definition

*** see our paper for why the empty type is needed

Theorem 2.0*

26

Implementation
Haskell library: github.com/hawnzug/polycheck

Can work with either QuickCheck or SmallCheck
automatically specializing types and inputs

27

Implementation

Preliminary experiments showed
it requires fewer test cases
to find counterexamples

28

Future Work
1. Incorporate information other than the typing

e.g., sort cmp list expects cmp to form a total order

28

Future Work
1. Incorporate information other than the typing

2. Extend work to test an API, not just one function
e.g., sort cmp list expects cmp to form a total order

28

Future Work
1. Incorporate information other than the typing

2. Extend work to test an API, not just one function
3. Further optimize the theorem

e.g., sort cmp list expects cmp to form a total order

e.g., for length : list(a) -> int
the best choice is the unit type, not natural numbers

