Program 1esting iy
"OIYIMOrpnic 1ypes

A1Z.00 JW.W. Zhuyanyg wang

Polymorphism

Same program for different kinds of data

Polymorphism

Same program for different kinds of data

map : (a -> b) -> list(a) -> list(b)

Polymorphism

Same program for different kinds of data

map : (a -> b) -> list(a) -> list(b)

map (*2) [1,2,3] = [2,4,6]

Polymorpnism

Same program for different kinds of data

map : (a -> b) -> list(a) -> list(b)

map (not) [true,false] = [false,true]

map : (a -> b) -> list(a) -> list(b)

Question: how can we test this function?

There are only two possibilities!

There are only two possibilities!

pPOjl (Jy>
pf‘sz (XJ)

There are only two possibilities!
proj; (1,y) =
proj, (X,v) =
proj (true,false) = ?

There are only possibilities!

There are only

pf‘Ojl (,y,z)
Pr‘ojz (XJ :Z>
pr‘oj3 (XJy))

possibilities!

There are only

pf‘Ojl (,y,z)
Pr‘ojz (XJ :Z>
pr‘oj3 (XJy))

possibilities!

proj (0,1,2) = ?

There are exactly n possibilities!

There are exactly n possibilities!

proj (0,1,2,...,n-1) = ?

There are exactly n possibilities!

proj (0,1,2,...,n-1) = ?

Any type with n distinct values works

There are exactly n possibilities!

log,(c«a+ . +a)=log,a")=n

12

There are exactly n possibilities!

log,(a«a+ . «a) =log,a’)=n
counting elements of type = in the input

13

one of the best types for testingx

log,

+ see our paper for caveats

one of the best types for testingx

log,

testing is still completexx

+ see our paper for caveats
++ the empty type might need to be separately tested

2018 1 joined the U

Mentioned this project in my job talk
2018 1 joined the U

Mentioned this project in my job talk
2018 1 joined the U

2019 Zhuyang became my student

Mentioned this project in my job talk
2018 1 joined the U

2019 Zhuyang became my student

2021 Paper published at POPL 2022
“Logarithm and Program Testing”

2010 “Testing Polymorphic Properties”
by Bernardy, Jansson, and Claessen

f -> H(a)
(other cases manually massaged into this form)

2010 “Testing Polymorphic Properties”
by Bernardy, Jansson, and Claessen

f -> H(a)
(other cases manually massaged into this form)

2017 Liyao Xia wrote a Haskell library
roughly based on the above paper

(with a logarithm-like operator in its codebase)

2010 “Testing Polymorphic Properties”
by Bernardy, Jansson, and Claessen

f -> H(a)
(other cases manually massaged into this form)

2017 Liyao Xia wrote a Haskell library
roughly based on the above paper

(with a logarithm-like operator in its codebase)

Logarithm-like operations have been discovered repeatedly

in the literature but no one connected logarithm to testing
e.g., [Abbott et al. 2003; Altenkirch et al. 2015]

f : (a->a) *a->a

f : (a->a) *a->a

Suppose the input is the pair
The output must be

f : (a->a) *a->a

Suppose the input is the pair
The output must be

f ((+#¢1), 0) = ?

this reveals the number of
in 1ts output

f : (a->a) *a->a

f : (a->a) *a->a

= log, log,
log,

le

f : (a->a) *a->a

log, Problem: 2 appears in
log,, log, the logarithm of

indicating recursion
log,

le

f : (a->a) *a->a

log, Problem: 2 appears in
log,, log, the logarithm of

indicating recursion
log,

Solution: recursive types!
ua.a+! is the naturals

le

le

log,
log,
log,

log,

Problem: = appears in
the logarithm of

indicating recursion

Solution: recursive types!
ua.a+! is the naturals

Sufficient for f ((+1), 0) = ?

one of the best types for testingx

ua.log,

a sufficiently large type to describe all
possible ways to generate an 2-element

* see our paper for remaining caveats

i i *
161 ||
For any two functions {, g : a(a) — H(a), if they

agree on all inputs when type a is instantiated
with pa.log,a(a) and with the empty typex+,

then they are exactly the same function!

* see our paper for omitted conditions
** see our paper for why the empty type is needed

4 | | I

log,(a) =1

log,(1) =0
log.(ai(a) * ax(a)) = log, (i (a)) + log.(ax(a))
log,(a,(a)) = ay(a) * log,(ax(a))

4 | I |

log,(a) =1

log,(1) =0

log.(ay(a) * ay(a)) = log.(as(a)) + log.(xx(a))
log,(ax(a)*™®) = ay(a) * log,(ax(a))

log,(b) =1log,(0) =0
log.(a(a) + ax(a)) = log.(ay(a)) + log.(az(a))
log,(ub...) = ...

Use over-approximation to cover more types

1
le

Theorem: instantiate & with

1
le

Theorem: instantiate & with

proj (true,true) = ?

proj (true,false) = ?
proj (false,false) = ?
proj (false,true) = ?

Theorem: instantiate & with =

proj (true,false)

proj (false,true)

Recall that logarithm is
large enough to index all
a-elements. The best tests
are those containing only
distinct a-elements.

le

map : (a -> b) -> list(a) -> list(b)

map : (a -> b) -> list(a) -> list(b)

one of the best types and inputs

a=>b =N
map = 7

intuition: an evil programmer can only do these three things:
duplicating, omitting, or permuting elements in the output list
the above test case detects all possible deviations
map id [1,1,1,1] in comparison is much less usetful

| x

For any two functions {, g : a(a) — H(a), if they
agree on optimal inputs with distinct a-elements=»
when type a is instantiated with pa.log,a(a)

and on all inputs with the empty typex*x,
then they are exactly the same function!

* see our paper for omitted conditions
** see our paper for the precise definition

¥ gee our paper for why the empty type is needed

| | [N | | | 4 |

Haskell library: github.com/hawnzug/polycheck

automatically specializing types and inputs

Can work with either QuickCheck or SmallCheck

| | [N

apply3 map takeWhile zipWith

—
o

S
B

Proportion
S
a1
Proportion
))
—_ DO
Proportion
S S
— [\
4._,_,_,_,;
Proportion
S

0.0 0.0 g S 0.0 0.0
0 2 4 6 8 0 2 4 6 8 10 12 0 25 50 75 100 0 5 10 15 20
Number of Test Cases Number of Test Cases Number of Test Cases Number of Test Cases

Implementation Preliminary experiments showed
PoLYCHECK with QUICKCHECK 1t requir es fewer test cases
Original QUICKCHECK to find counterexamples

wUIR

1. Incorporate information other than the typing
e.g., sort cmp list expects cmp to form a total order

wUIR

1. Incorporate information other than the typing
e.g., sort cmp list expects cmp to form a total order

2. Extend work to test an API, not just one function

wUIR

1. Incorporate information other than the typing
e.g., sort cmp list expects cmp to form a total order

2. Extend work to test an API, not just one function

3. Further optimize the theorem
e.g., for length : list(a) -> 1int
the best choice is the unit type, not natural numbers

