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Polymorpnism

Same program for different kinds of data

map : (a -> b) -> list(a) -> list(b)

map (not) [true,false] = [false,true]



map : (a -> b) -> list(a) -> list(b)

Question: how can we test this function?
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There are exactly n possibilities!

proj (0,1,2,...,n-1) = ?

Any type with n distinct values works



There are exactly n possibilities!
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There are exactly n possibilities!

log,(a«a+ . «a) =log,a’)=n
counting elements of type = in the input

13
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one of the best types for testingx

log,

testing is still completexx

+ see our paper for caveats
++ the empty type might need to be separately tested
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2010 “Testing Polymorphic Properties”
by Bernardy, Jansson, and Claessen

f -> H(a)
(other cases manually massaged into this form)

2017 Liyao Xia wrote a Haskell library
roughly based on the above paper

(with a logarithm-like operator in its codebase)

Logarithm-like operations have been discovered repeatedly

in the literature but no one connected logarithm to testing
e.g., [Abbott et al. 2003; Altenkirch et al. 2015]
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f : (a->a) *a->a

Suppose the input is the pair
The output must be

f ((+#¢1), 0) = ?

this reveals the number of
in 1ts output
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log,
log,
log,

log,

Problem: = appears in
the logarithm of

indicating recursion

Solution: recursive types!
ua.a+! is the naturals

Sufficient for f ((+1), 0) = ?



one of the best types for testingx

ua.log,

a sufficiently large type to describe all
possible ways to generate an 2-element

* see our paper for remaining caveats
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For any two functions {, g : a(a) — H(a), if they

agree on all inputs when type a is instantiated
with pa.log,a(a) and with the empty typex+,

then they are exactly the same function!

* see our paper for omitted conditions
** see our paper for why the empty type is needed
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log,(a) =1

log,(1) =0

log.(ay(a) * ay(a)) = log.(as(a)) + log.(xx(a))
log,(ax(a)*™®) = ay(a) * log,(ax(a))

log,(b) =1log,(0) =0
log.(a(a) + ax(a)) = log.(ay(a)) + log.(az(a))
log,(ub...) = ...

Use over-approximation to cover more types
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Theorem: instantiate & with

proj (true,true) = ?

proj (true,false) = ?
proj (false,false) = ?
proj (false,true) = ?



Theorem: instantiate & with =

proj (true,false)

proj (false,true)

Recall that logarithm is
large enough to index all
a-elements. The best tests
are those containing only
distinct a-elements.

le
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map : (a -> b) -> list(a) -> list(b)

one of the best types and inputs

a=>b =N
map = 7

intuition: an evil programmer can only do these three things:
duplicating, omitting, or permuting elements in the output list
the above test case detects all possible deviations
map id [1,1,1,1] in comparison is much less usetful
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For any two functions {, g : a(a) — H(a), if they
agree on optimal inputs with distinct a-elements=»
when type a is instantiated with pa.log,a(a)

and on all inputs with the empty typex*x,
then they are exactly the same function!

* see our paper for omitted conditions
** see our paper for the precise definition

¥ gee our paper for why the empty type is needed
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Haskell library: github.com/hawnzug/polycheck

automatically specializing types and inputs

Can work with either QuickCheck or SmallCheck
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Implementation Preliminary experiments showed
PoLYCHECK with QUICKCHECK 1t requir es fewer test cases
Original QUICKCHECK to find counterexamples
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wUIR

1. Incorporate information other than the typing
e.g., sort cmp list expects cmp to form a total order

2. Extend work to test an API, not just one function

3. Further optimize the theorem
e.g., for length : list(a) -> 1int
the best choice is the unit type, not natural numbers



