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Type Space

Function Continuous Mapping

Element Point

Dependent Type Fibration

Identi�ication Path

A

a : A

f : A → B 

C : A → Type

a =A b

Homotopy-Theoretic Interpretation
[Awodey and Warren] [Voevodsky et al]
[van den Berg and Garner]



New Features

Univalence
if e is an equivalence between
types A and B, then ua(e):A=B

Higher
Inductive
Types

circle sphere torus



Mechanizing theorems
in univalent type theory

Higher-dimensional types
provide novel abstraction for mechanization

[experiments]

[statement]



My Thesis + Follow-Ups

Covering spaces
Seifert-van Kampen theorem
Blakers-Massey theorem

[Favonia and Harper]

[Shulman and Favonia]

[Lumsdaine, Finster, Licata,
             Brunerie and Favonia]

[Buchholtz and Favonia]

Homotopy groups

Cohomology groups
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Homotopy Groups
{ mappings from the n-sphere }

ASn

“higher” if n > 1



First Homotopy Group
{ mappings from the circle }

AS1

directed loops at some point
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Subject: sets with
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Covering Spaces

F : A → Set

Classical de�inition
A covering space of A is a space C together with a continuous
surjective map p : C → A, such that for every a ∈ A, there
exists an open neighborhood U of a, such that p-1(U) is
a union of disjoint open sets in A, each of which is mapped
homeomorphically onto U by p.

Type-theoretic de�inition



Theorem*

Covering spaces
F : A → Set

*A is pointed and connected

Sets with some action by the
�irst homotopy group of A≃

More results in “Higher Groups in Homotopy Type Theory”
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Pushouts

A B

Disjoint sums + gluing

c

f(c) g(c)
C



First Homotopy Groups
all paths from a point to itself

all paths between any two points
Fundamental Groupoids

[ generalization ]



A B

C

All paths are sequences of
alternating paths in A and B

[ Seifert–van Kampen ]



A B

C

[ Seifert–van Kampen ]

Paths of the pushout can be calculated
from paths of A and B and points of C
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Homology Groups
{ holes in a space }

Cohomology Groups
{ mappings from holes in a space }

Easier than homotopy groups
for many spaces of interest



Homology Groups of Spheres

S1 Z 0 0 0 0 0
0 Z 00 0 0S2

0 0Z 0 00S3

S4 0 0 0 0Z 0
S5 0 0 0 0Z0
S6 0 0 0 Z00

1 2 3 4 5 6



Higher-dimensional types
provide novel abstraction that facilitates
the mechanization of homotopy theory

[experiments]

[statement]

Covering spaces
Seifert-van Kampen theorem

Blakers-Massey theorem
Cohomology groups
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Post-Thesis

Involved in the development of
cubical type theory

Ask Bob and his students



Thanks to Bob, the PoP group,
the HoTT community, CMU sta�
(esp. Deborah and Catherine),
my spouse, and many, many people

...also Mark Rothko
for artistic inspiration



Have fun!


