towards efficient cubical type theory

Scientific Study

 efficiency3
$\vdash M: A$

$i: \mathbb{I} \vdash M: A$ M
 $i=A$

5
$i: \mathbb{I}, j: \mathbb{I} \vdash M: A$

6

$i: \mathbb{I}, \mathrm{j}: \mathbb{I}, \mathrm{k}: \mathbb{I} \vdash \mathrm{M}: \mathrm{A}$

7

$i: \mathbb{I}, j: \mathbb{I}, k: \mathbb{I}, l: \mathbb{I} \vdash M: A$

8

$$
\mathrm{i}_{1}: \mathbb{I}, \ldots, \mathrm{i}_{\mathrm{n}}: \mathbb{I} \vdash \mathrm{M}: \mathrm{A}
$$

9

Kan filling/ composition structure

coercion/transport

11

11

12

12

homogeneous composition

13

homogeneous composition

13

homogeneous composition

13

homogeneous composition

13

$\operatorname{hcom}^{0 m 1}[A](M)$
$\quad[i=0 \hookrightarrow \ldots, i=1 \hookrightarrow \ldots, j=1 \hookrightarrow \ldots]: A$
homogeneous composition

13

$\operatorname{hcom}^{0 \rightarrow i}[A](M)$
$[\mathrm{i}=0 \hookrightarrow \ldots, \mathrm{i}=1 \hookrightarrow \ldots, \mathrm{j}=1 \hookrightarrow \ldots]: A$

homogeneous composition

14

$$
\begin{aligned}
& \operatorname{hcom}^{0 \rightarrow 1}[A](M) \\
& \quad[i=0 \hookrightarrow \ldots, i=1 \hookrightarrow \ldots, i=j \hookrightarrow \ldots]: A
\end{aligned}
$$

homogeneous composition

with the power of cubes

univalence and higher

 indexed inductive types with canonicity \triangle[CCHM, AFH, ABCFHL, CHM, Cavallo \& Harper] see also Coquand's notes
cubicaltt Agda
$0 \mathrm{~m} \rightarrow 1, \mathrm{r}=0 / 1$
$\{0,1, \wedge, \mathrm{v}, \neg\}$

extension types

18

<i>P: Path[i.A] (M, N)

19

$$
<i>P:[i] A[i=0 \hookrightarrow M, i=1 \hookrightarrow N]
$$

[Shulman \& Riehl]

20

($\mathrm{P}:[\mathrm{i}] \mathrm{A}[\mathrm{]}) \rightarrow$
(Q: [i] A [i=0 \rightarrow P 1]) \rightarrow [i] $\mathrm{A}[\mathrm{i}=0 \hookrightarrow \mathrm{P} 0, \mathrm{i}=1 \hookrightarrow \mathrm{Q}$ 1]

$[i j] A[i=0 \hookrightarrow \ldots, i=j \rightarrow \ldots]$

22

coe[i.[j]A[]](<j>M) $=\langle j>\operatorname{coe}[\mathrm{i} . \mathrm{A}](M)$

fewer fixers, fewer fixes

empty systems

24

hcom $[A](M)[]$

hcom[A](M)[]

$=M$ with regularity
easy to have regularity without univalent Kan universes \& HITs
see summary in [Swan] 1808.00920

25

why do we have empty systems?

- the lack of coe (in some variants)
- " \forall " operator (in some variants)

26

com[i.A]
 \mathfrak{j}
 coe[i.A] + hcom[A]

27

$\operatorname{com}[\mathrm{i} . \mathrm{A}](\mathrm{M})[]$ coercion without coe coe[i.A] + hcom[A]

28

separating coe and hcom

- makes HITs possible and
- kills a major source of empty systems

29
kill empty systems completely?
restrict shapes of hcom to cofibrations that are, equivalently,

- [geometry] covering every point; or
- [syntax] true under all closed substitutions; or
- [topos] in $\{\varphi \in \operatorname{Cof} \mid \neg\urcorner \llbracket \varphi \rrbracket\}$
- variants based on cartesian cubes: CHTT [AFH,CH], RedPRL, redtt, ...
- variants based on de morgan cubes: maybe? ask Andrea Vezzosi difficulty: still need to handle arbitrary cofibrations (due to " \forall ") open: generality? is the extra complexity worth it?

32

kind semilattices

Kan types

pretypes

34

discrete types

constant presheaves

Kan types

pretypes

34

discrete the entire "ETT", including equality types, can be types embedded while coexisting with other cubical features

Kan types

pretypes

more can be added; ask Evan Cavallo about trivial coe/hcom

kinds

automatic association of structure or properties with (families of) types (cf. the [LOPS] style)
 needs a meet semilattice; better if it is Heyting

kinds

$$
\begin{array}{ll}
\text { if } A: U_{k_{1}}, A: U_{k_{2}}, \ldots, A: U_{k_{n}} \text {, then } A: U_{k^{*}} ? & \operatorname{meet}_{i}\left(k_{i}\right) \leq k^{*} \\
\text { what's missing from } A: U_{k} \text { to reach } A: U_{k^{*}} ? & k \rightarrow k^{*}
\end{array}
$$

kinds +

higher inductive types

data pushout where
$\mid \operatorname{inl}(\mathrm{a}: \mathrm{A})$
$\mid \operatorname{inr}(\mathrm{b}: \mathrm{B})$
$\mid \operatorname{push}(\mathrm{i}: \mathbb{I})(\mathrm{c}: \mathrm{C})[\mathrm{i}=0 \hookrightarrow \operatorname{inl}(\mathrm{f} \mathrm{c}), \mathrm{i}=1 \hookrightarrow \operatorname{inr}(\mathrm{~g} \mathrm{c})]$

```
coe(inl(a)) = inl(coe(a))
coe(inr(b)) = inr(coe(b))
```

$$
\begin{aligned}
& \operatorname{coe}(\operatorname{inl}(\mathrm{a}))=\operatorname{inl}(\operatorname{coe}(\mathrm{a})) \\
& \operatorname{coe}(\operatorname{inr}(\mathrm{b}))=\operatorname{inr}(\operatorname{coe}(\mathrm{b})) \\
& \operatorname{coe}\left(\operatorname{push}_{\mathrm{i}}(\mathrm{c})\right) \neq \operatorname{push}_{\mathrm{i}}(\operatorname{coe}(\mathrm{c}))
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{coe}(\operatorname{inl}(\mathrm{a}))=\operatorname{inl}(\operatorname{coe}(\mathrm{a})) \\
& \operatorname{coe}(\operatorname{inr}(\mathrm{b}))=\operatorname{inr}(\operatorname{coe}(\mathrm{b})) \\
& \operatorname{coe}\left(\operatorname{push}_{\mathrm{i}}(\mathrm{c})\right) \neq \operatorname{push}_{\mathrm{i}}(\operatorname{coe}(\mathrm{c}))
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{coe}(\operatorname{inl}(\mathrm{a}))=\operatorname{inl}(\operatorname{coe}(\mathrm{a})) \\
& \operatorname{coe}(\operatorname{inr}(\mathrm{b}))=\operatorname{inr}(\operatorname{coe}(\mathrm{b})) \\
& \operatorname{coe}\left(\operatorname{push}_{\mathrm{i}}(\mathrm{c})\right)=\operatorname{hcom} . . .(\text { omitted })
\end{aligned}
$$

naive coercion is fine when f and g are "clean" (ex: joins) or when A and B are discrete (ex: suspensions)

what's next?

- make great proof assistants
- optimize Kan operations of universes
- recover regularity as much as possible
- finish all the meta-theorems

