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Abstract
Broadly speaking, algebraic topology consists of associating algebraic structures to topological
spaces that give information about their structure. An elementary, but fundamental, example is
provided by the theory of covering spaces, which associate groups to covering spaces in such a
way that the universal cover corresponds to the fundamental group of the space. One natural
question to ask is whether these connections can be stated in homotopy type theory, a new area
linking type theory to homotopy theory. In this paper, we give an affirmative answer with a
surprisingly concise definition of covering spaces in type theory; we are able to prove various
expected properties about the newly defined covering spaces, including the connections with
fundamental groups. An additional merit is that our work has been fully mechanized in the
proof assistant Agda.
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1 Introduction

Homotopy type theory [33] is a new area arising from surprising connections between type
theory, homotopy theory and category theory. Using a variant of Martin-Löf type theory [29,
33, 36] extended with Vladimir Voevodsky’s univalence axiom [19] and higher inductive
types [27,33], homotopy-theoretic concepts can be expressed in type theory in a direct and
intuitive way, as we will see in the case of covering spaces.

The connection between this variant of Martin-Löf type theory and homotopy theory
is through the identification-as-path1 interpretation [3, 12, 19, 28, 33–35, 38]. According to
this interpretation, types may be treated as spaces,2 elements of a type as points in a space,
functions as continuous mappings, families of types as fibrations, and of course identifications

∗ This research was sponsored by the National Science Foundation under grant numbers CCF-1116703 and
Air Force Office of Scientific Research under grant numbers FA-95501210370 and FA-95501510053. The
views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

1 Identification types are also called identity types in the literature.
2 More precisely, simplicial sets, and the interpretation was given in [19]. Spaces in this paper really mean

simplicial sets unless we are explicitly discussing point-set topology. For clarity, spaces in point-set
topology will be denoted as topological spaces.
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23:2 Covering Spaces in Homotopy Type Theory

as paths;3 the higher-dimensional structures induced by iterated identification make every
type an ∞-groupoid.4 With this connection, we can use type-theoretic approaches to state,
prove and even mechanize theorems from classical homotopy theory, making the type theory
a framework of synthetic homotopy theory; proofs are dependently typed functional programs,
except that they do not run due to incomplete support of computation of the univalence
axiom and higher inductive types in current mature proof assistants and the type theory we
use in this paper.

A wide range of homotopy-theoretic results have been developed and mechanized in proof
assistants such as Agda [6,30], Coq [1,4] and Lean [9,11], for example homotopy groups of
spheres [5, 23, 26, 33], the Seifert–van Kampen theorem [17], the Blakers–Massey connectivity
theorem [16], the Eilenberg–Mac Lane spaces [25], the Mayer–Vietoris sequences [10], the
Cayley–Dickson construction [8], the double groupoids [37] and many more [24,32,33]. Proofs
done in homotopy type theory have the advantage that they admit many models other
than the homotopy theory of topological spaces; some even stimulated new research in
mathematics [2, 31]. As a side note, many theorems were actually first mechanized in proof
assistants and then “unmechanized” to engage wider audience, which is only possible through
a powerful, high-level framework such as homotopy type theory.

Covering spaces are one of the important constructs in homotopy theory, and given the
connection between type theory and homotopy theory, a natural question to ask is whether
such a notion can be stated in type theory as well. It turns out that we can express covering
spaces concisely as follows.

I Definition 1. A covering space of a type (space) A is a family of sets indexed by A.

That is, the type of covering spaces of A is simply A→ Set where Set is the type of all sets,
the universe of all types that have at most one identification between any two points. Several
examples are shown in Figure 1.

How do we know this definition really defines covering spaces? A characteristic feature of
covering spaces of a connected space A in the classical theory is that they are represented
by sets with a group action of the fundamental group of A (the set of loops at some point
in A). Therefore, we may justify our definitions by proving this theorem, as we will in
Section 4. See Figure 1 which also lists such sets corresponding to the covering spaces in
the figure. Moreover, considering the category5 of pointed covering spaces where morphisms
are fiberwise functions, we also know there should be an initial covering space (named
the universal covering space) and it should be represented by the fundamental group itself
through the representation theorem stated above.6 We also managed to show these results
as demonstrated in Section 5. Before transitioning to these main theorems, in Section 3 we
will also discuss briefly about the discrepancies between our formulation and the classical
definition. More discussions and future research directions can be found in Section 6.

All the results mentioned in this paper have been mechanized in the proof assistant
Agda [6]. The representation theorem was briefly mentioned in the book without proofs [33]

3 All topological terms in this paper should be understood “up-to-homotopy” in some appropriate sense,
because every construct in the type theory will respect homotopy equivalence under the intended
interpretation to simplicial sets.

4 To avoid confusion, this result was a meta-theoretical result given in [34], and we believe it has not
been internalized in type theory yet.

5 The category here is the same as the category introduced in [33, §9.1]. The type of morphisms (fiberwise
functions) between two covering spaces is a set because each fiber of a covering space is a set, and the
notion of isomorphism in this category collides with identification.

6 See Section 5 for a more precise statement.
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Figure 1 Correspondence between covering spaces and sets equipped with a group action.

The top row is the visualization of the covering spaces. The middle row shows their type-theoretic
formulations (as a function from the circle to the universe) specified by a fiber for the base generator
and an identification from the fiber to itself for the loop generator of the circle. The last row is the
corresponding sets and their actions, represented by their acts on the (only) loop generator.

and an extended abstract without peer review was posted before [15], but a full paper was
never published.

2 Type-Theoretic Notation and Background

We assume readers are already familiar with basic concepts in homotopy type theory,
including higher inductive types; interested readers are recommended to read the book [33]
for introduction, especially its Chapter 2 describing how type-theoretic concepts may be
understood homotopy-theoretically. This section is mainly a brief overview of the notation
used in this paper with remarks on some subtle differences from the book [33] or the proof
assistant Agda. Overall we are loosely following the style of the book [33] while keeping an
Agda translation obvious.

Throughout this paper, ≡ is judgmental equality and :≡ indicates a definition. The equal
sign = is reserved for identification as mentioned below.

2.1 Sums and Products

Let B be a family of types indexed by a type A. Dependent sum types are written
∑

x:A B(x)
with pairs 〈a; b〉 as elements and dependent function types

∏
x:A B(x) with λ-functions. The

type
∑

x:A B(x) is also called the total space of B. If B(x) ≡ B′ actually does not depend
on the index x : A, we have the binary product type A × B′ meaning the non-dependent
sum type

∑
:A B

′ and the arrow type A → B′ the non-dependent function type
∏

:A B
′.

Function compositions are written f ◦ g.
Multi-argument application is written f(x1, x2, · · · , xn) and nested sum types will be

presented as records types with labels (like “label”). As a notational abuse, a label is also
the projection function which projects out the corresponding component from a record.

CVIT 2016



23:4 Covering Spaces in Homotopy Type Theory

2.2 Identification
Let a and b be two points in some type A. The identification type or the path type between a
and b is written a =A b, and A may be omitted if clear from the context. The reflexivity
identification at a is written refla, the concatenation (in the diagram order) written p • q,
and the inverse identification written p−1.

The induction principle of identification types intuitively states that, given a statement
about identifications, one can just consider the refl case. The argument is that one may
continuously grow a refl to arbitrary identifications, and because every function in the
type theory is continuous, the conclusion remains valid. However, to make this “continuous-
growing” argument work, the precise formulation of this principle is quite delicate and is
discussed in more details in [33, §1.12]. For example, the statement about identifications
must make sense for identifications between two possibly different points in order to allow
the refl case to “grow”.

As mentioned in the introduction, identification types may be iterated as p =a=Ab q,
P =p=a=Abq Q and so on. Throughout the paper the word dimension refers to the level
of identification iteration; that is, the n-dimensional structures in type A refer to the nth
iteration of identification starting from the type A.

2.3 Universes, Equivalence and Univalence
Both the type theory and the proof assistant Agda have a ramified hierarchy of cumulative
universes to avoid Girard’s paradox [13,18], but in this paper we will suppress the universe
level, pretending there is only one universe written U . Universe levels are explicit and universe
lifting is manual in the current Agda system, but they did not constitute an obstacle to
mechanizing covering spaces.

The equivalence type A ' B intuitively collects all the equivalences between types A and
B. It is actually tricky to obtain a good definition for equivalences in homotopy type theory;
interested readers are recommended to consult [33, Chap. 4] for a precise definition. For this
paper it suffices to know that the following data are sufficient to build a good equivalence: a
function from A to B, a function from B to A, and two proofs showing the two compositions
are homotopic to the identity functions.

With a good definition of equivalences, we have the univalence axiom stating that the
equivalence type between types A and B is itself equivalent to the identification type A =U B.
The univalence axiom not only recognizes new identifications between types, but also has
profound impact on the type theory; in particular, functional extensionality becomes provable,
and is used throughout the paper for our covering spaces are defined as functions from the
base type to the universe.

Two families of types indexed by the same type are equivalent if they are fiberwise
equivalent, and a fiberwise function between two families is a family of functions between
corresponding fibers. By the univalence axiom (and functional extensionality), fiberwise
equivalence also implies the identification of two families of types.

For a family of types B indexed by a type A, an identification p in A from point a to
point b will force an equivalence between corresponding fibers B(a) and B(b). The intuition
is that a family of types indexed by B is a function from B to the universe U ; it will preserve
identifications, and by the univalence axiom identifications in the universe are equivalences.
The equivalence (as a function) is called transport and is written transportx.B(x)(p; a′),
meaning the transport of a′ : B(a) along p : a =A b across the family B to the fiber B(b). It
is also functorial in p in the sense that it sends reflexivity to identity equivalence and path
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A 0-connected space. A 1-connected space.

Figure 2 Examples of connected spaces without structures above dimension 1.

Vertices represent the elements and edges represent the identification generators. The space on the
left is not 1-connected because paths between points are not unique. Conversely, a 1-connected

space is always 0-connected.

concatenation to equivalence composition.

2.4 Truncation and Connectivity
Truncation levels denote the dimension (iteration level of identification) above which a type is
trivial: a type is at level −2 if it is contractible, which means it is equivalent to the unit type
and is trivial at all dimensions, and a type is at level (n+ 1) if its identification types lie at
level n. It may seem odd that the level starts with −2, not 0, but it matches well with other
theories such as groupoid theory; for example, there is a tight connection between types at
level 1 and 1-groupoids.

A type at level −1 is called a mere proposition, where any two points are identified,
and a type at level 0 is called a set, where any two parallel identifications are identified.
Equivalences between sets are called isomorphisms.7 It can be shown that the truncation
levels form a cumulative hierarchy, in addition to the existing one based on their universe
levels (which are suppressed in this paper).

An n-type [33, §7.1] is a type at truncation level n. The type Set, as mentioned above,
is the type of all 0-types. The n-truncation of a type A is, intuitively, the best n-type
approximation of the type A, written ‖A‖n, where the projection of a : A into the truncation
is written |a|n. More precisely, ‖A‖n is the n-type with the universal property that there
is a unique extension of any function of type A→ B to ‖A‖n for any n-type B, as shown
below. The n-truncation of an n-type is equivalent to the n-type itself.

A //

|−|n
��

B

‖A‖n

==

for any n-type B.

Connectivity [33, §7.5] is the “dual” of truncation level in the sense that an n-connected
type is trivial below or at the dimension n. See Figure 2 for a visualization of 0-connected
and 1-connected spaces. In this work we critically rely on the fact that, for any two points
in an n-connected type, there is an element in the (n− 1)-truncation of the identification
type between those two points. Technically, an n-connected type is defined to be a type
whose n-truncation is contractible, meaning that it can only have non-trivial structures above
dimension n.

7 This follows the convention in [33, §2.4].

CVIT 2016



23:6 Covering Spaces in Homotopy Type Theory

Because we will be working closely with many elements in the n-truncation of identification
types, we may call such elements n-truncated identifications for short, or even truncated
identifications if the truncation level is clear from the context.

Throughout this paper, some mere propositions are called properties, hinting they are
mathematical properties whose witnesses are irrelevant (except ther existence), in contrast
with mathematical structures which might carry non-trivial information.

2.5 Set Quotients
Let A be a type and R : A→ A→ U a family of types doubly indexed by A. We write A/R
as the set quotient of A by R, [a] as the equivalence class of a : A, and quot(r) for r : R(a, b)
as a witness of [a] =A/R [b]. The family R need not be an equivalence relation itself, but the
set quotient in type theory effectively takes the reflexive, symmetric and transitive closure of
R. Note that we did not require R to be a family of mere propositions as in the book [33]
because in theory it made little difference and in practice it is convenient not to be concerned
about truncation levels. Similarly, A is not required to be a set, even though the set quotient
A/R always is.

2.6 Fundamental Groups and Truncated Identification
As mentioned earlier, iterated identification forms the structure of ∞-groupoids. The 0-
truncation of identification thus behaves like ordinary groupoids, which reduce to groups if we
only focus on some particular point [33]. More precisely, given a type A with a distinguished
point a, the fundamental group of the type A at a, written π1(A, a), is the set ‖a = a‖0
along with concatenation as composition and (truncated) reflexivity as the unit. When the
distinguished point a is clear from the context, we may omit the point and write π1(A) for
short.

We will reuse the path concatenation and path inverse (p • q and p−1) on 0-truncated
identifications for a cleaner presentation; however, the distinction is still important and so we
will mark every other use of truncation. In particular, the transport function on 0-truncated
identifications is written with an additional subscript “0” as

transportx.B(x)
0 (p; a′) : B(b)

where B is a family of 0-type indexed by A, p is a 0-truncated identification in ‖a = b‖0, and
a′ is a point in the fiber B(a). It is important that the truncation level of p (which is 0 here)
matches the truncation level of B so that we may apply the universal property of truncation.

2.7 Implicit Coercion
To further reduce notational clutter, we adopt implicit coercion when no confusion would
occur. For example, a group may be implicitly coerced into its underlying set; an n-type,
which in reality carries a proof of its truncation level, may drop the proof silently; and a
pointed type may be coerced into its carrier. Agda has limited support of coercion through
instance arguments, but we did not use them in our mechanization except for numeric literals.

3 Comparison with Classical Definition

Our type-theoretic formulation appears quite different from the classical definition of covering
spaces, and thus readers with the background in classical algebraic topology might wonder
how this definition links to the classical one.
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The situation is somewhat complicated because our construction lies in the type theory
while the most common classical definition is expressed in point-set topology. We have
an interpretation of the type theory into simplicial sets, and then geometric realization of
simplicial sets into topological spaces, but not a direct interpretation into topological spaces
yet to the best of our knowledge. A rigorous mathematical proof will involve interpreting
our construction (Definition 1) into simplicial sets and then topological spaces, and is
unfortunately beyond the scope of this paper. Instead, we will only give some intuition about
the linkage in this section, and provide more internal evidence throughout the paper.

Here is a definition of covering spaces in terms of point-set topology [14, p. 29]:

I Definition 2 (classical definition of covering space). A covering space of a topological space
A is a topological space C with a continuous surjective map π : C → A such that for each
point a ∈ A there is an open neighborhood U of a in A such that p−1(U) is a union of
disjoint open sets, each mapped homeomorphically onto U by p.

The connection between the two kinds of covering spaces lies in several critical observations:
Definition 1 defines a covering space as an A-indexed family of type F while Definition 2
focuses on a map p from C to A. To fit a covering space of the first kind, F , into the
latter definition, one may choose the total space

∑
a:A F (a) as C and the first projection

as the map from C to A; the notion preimage p−1(a) is then replaced by the fiber F (a).
In general, type families and fibrations (for example p here) are equivalent and this
connection is discussed in details in [33, §2.3]. We chose families over fibrations because
it is easier to work with families of types inside the type theory.
Next, the use of neighborhoods can be largely avoided because every space constructed by
the standard geometric realization of a simplicial set is a CW complex and thus satisfies
all local connectedness properties (for example local path-connectedness or semi-local
simple connectedness). Moreover, every construct in type theory is continuous under this
interpretation. Therefore, there is no need to mention local connectivity or continuity,
because we cannot define any “bad” space in the type theory.
Homeomorphism is weakened to homotopic equivalence because, again, it is impossible
to distinguish homeomorphic but not homotopic objects inside the type theory.8

The real discrepancy is that the classical definition requires that the total space C (or∑
a:A F (a) from the first definition) to be non-empty and that p (or the first projection

from
∑

a:A F (a) to A) is surjective. This condition is needed for the universal covering
to be universal, as we will discuss in Section 5; otherwise the empty space would be the
universal covering space for any base type. However, without the non-emptiness or surjectivity
requirement, the representation theorem (Theorem 4) does not have to rule out empty sets
with actions; moreover, in a constructive setting there are many possible formulations of these
conditions that are all classically equivalent but with different constructive content. Indeed,
in Section 5 where we discuss universal covering spaces, we derive a pointedness condition
that is constructively much stronger than (but classically equivalent to) mere non-emptiness.
It is important to isolate the usage of non-emptiness or surjectivity to study their impact in
constructive mathematics.

As a further justification, one can immediately prove the following lemma in the type
theory when the base type A is the circle S1:

8 This does not take into account of the possibility of, for example, internalizing the entire set theory
in the type theory and redoing the point-set topology. We assume a more direct interpretation into
simplicial sets and then topological spaces.

CVIT 2016



23:8 Covering Spaces in Homotopy Type Theory

I Lemma 3. There is an equivalence between S1 → Set and sets with an automorphism.

Proof. (Omitted, but fully mechanized in the proof assistant Agda as a separate lemma.) J

This lemma is a special case of the main theorem we will present in the next section.

4 Representation Theorem

The first main result of this paper is that covering spaces of a 0-connected, pointed space A
are represented by sets equipped with a group action of the fundamental group of A, which
is to say there is an equivalence between covering spaces and such sets. The intuition is
that everything in homotopy type theory must respect identification, and the fact that the
base type A is 0-connected indicates that there is a (−1)-truncated identification between
any two points and thus a (−1)-truncated isomorphism between any two fibers. Therefore,
it is represented by one copy of these isomorphic sets and a description of how they are
isomorphic, encoded as an action of the fundamental group. See Figure 1 for examples of
how a covering space is represented by a set with an action.

Formally, a set with a group action of G is called a G-set, a functor from the group G
(treated as a category with one object and elements in G as morphisms) to the category of
sets up to isomorphism; a group set is a G-set without the group G being specified. In type
theory, a G-set is a record with the following components:

El: a set.
α: a (right) group action of type El→ G→ El.
α-unit: a proof of the property that α preserves the group identity:∏

x:El

α(x, unit(G)) =El x.

α-comp: a proof of the property that α preserves the group composition:∏
x:El

∏
g1,g2:G

α(x, comp(G)(g1, g2)) =El α(α(x, g1), g2).

The representation theorem is then about covering spaces being represented by π1(A, a)-
sets, which can be formally stated as follows:

I Theorem 4 (representation by group sets). For any 0-connected type A with a point a, we
have (A→ Set) ' π1(A, a)-Set.

Proof. The standard methodology to show equivalence in homotopy type theory is to
establish two functions inverse to each other. That is, we want to establish two functions
from covering spaces A→ Set to group sets π1(A)-Set and vice versa, and show that the
round-trips are the identity function.

The direction from covering spaces A → Set to group sets π1(A)-Set is relatively
straightforward: the group set should capture a representative fiber with isomorphisms
between fibers. Because the base type A is 0-connected, every fiber is equally qualified, and
so we choose the one over the distinguished point a. Moreover, recall that the isomorphism
forced by an identification in the base type, as discussed in Section 2, is the transport function.
Putting these together, we can define a π1(A)-set from a covering space F : A → Set by
taking

El :≡ F (a)

α :≡ λx.λg.transportx.F (x)
0 (g;x)
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with properties α-unit and α-comp derived from functoriality of transport0. The reason
that we only have to record the automorphisms of F (a) forced by loops at a (instead of all
isomorphisms between all fibers) is because A is 0-connected; that is, every point in A is
merely connected to a by a (−1)-truncated identification, and thus the automorphisms at a
determine the isomorphisms between all fibers.

The other direction, from group sets X : π1(A)-Set to covering spaces, is more technically
involved. A good guide is to focus on a group set generated from some covering space
F ′ : A→ Set through the above process; if the theorem is true, we should be able to recreate
a covering space F : A→ Set equivalent to F ′. A key observation is that every point in any
fiber of F ′ is a result of transporting some point in the fiber F ′(a) to that fiber, noting that
X was defined to be F ′(a). Thus, one idea is to populate the new family F with formal
transports from X quotiented by the supposed functoriality of transports and the agreement
with α, in the hope to mimic the real transport0 in F ′. The formal definition is shown as
follows; in the definition, the quotient relation ∼b can be seen as a succinct summary of the
functoriality of transports and the agreement with α.

I Definition 5 (reconstructed covering space). Let A be a type with a point a and X be a
π1(A, a)-set with an action α. The reconstructed covering space, F : A→ Set, is defined as

F :≡ λb.(X × ‖a =A b‖0)/∼b

where the relation ∼b is defined as the least relation containing

〈α(x, `); p〉 ∼b 〈x; ` • p〉 for any x : X, ` : ‖a = a‖0 and p : ‖a = b‖0.

This completes the construction of the new covering space F .

The next step is to show that these two functions are indeed inverse to each other.
However, in this paper we will only highlight the interesting part in proving the reconstructed
covering space F is indeed equivalent to the original F ′. Following the standard recipe
of equivalence, two functions back and forth are needed for the equivalence between two
covering spaces. The direction from F to F ′ is simply realizing the formal transports; that is,
for any point b : A and any representive 〈x; p〉 in the fiber F (b) (defined as a set quotient),
we have

transportx.F ′(x)
0 (p;x) : F ′(b)

because x : X, p : ‖a = b‖0 and X :≡ F ′(a). One can then show this expression respects
the quotient relation ∼b imposed on F (b) in Definition 5. The other direction is somewhat
unclear—given a point y in the fiber F ′(b), how shall we locate a point x in F (a) and compute
a truncated identification p such that y will be the result of transporting x along p?

Recall that the connectivity of A implies that there is a (−1)-truncated identification
between any two points. That is, for any point b : A we have a truncated identification
p : ‖a =A b‖−1. One attempt is then to transport y along the inverse of p to some point x in
F (a), for transporting x back along p should cancel the opposite transportation and recover y;
the pair 〈x; p〉 in F (b) then corresponds to y. The problem is that all the transportation and
pairing demand 0-truncated identifications but p is a (−1)-truncated identification. In other
words, there is a gap between the truncation level of the identifications from connectivity
(−1) and that of the fibers of covering spaces (0), which prevents the application of the
universal property of truncation.

Fortunately, such a truncation level gap can be filled by a constancy condition. We can
show that different choices of identifications between a and b result in pairs related by the

CVIT 2016



23:10 Covering Spaces in Homotopy Type Theory

quotient relation imposed on F (b), and then, by the following lemma, we can extend the
above construction to (−1)-truncated identifications. The intuition is that if a function does
not depend on the value of the input but only its existence, a (−1)-truncated input should
suffice.

I Lemma 6 (extension by weak constancy9). Let A be a type and B a set. For any function
f : A→ B such that

∏
x,y:A f(x) =B f(y) there exists a function g : ‖A‖−1 → B such that

f ≡ g ◦ |−|−1.

We will now carefully construct the function from F ′ to F sketched above, using this
lemma. For any point b : A, we have a function fb : F ′(b)→ (a =A b)→ F (b) as

fb :≡ λy.λp.
[〈

transportx.F ′(x)
0

(
|p|0
−1; y

)
; |p|0

〉]
,

which transports y to some point in F (a). We want to show Lemma 6 applies to fb(y,−)
for any y : F ′(b) so that a (−1)-truncated identification suffices. To satisfy the constancy
condition in Lemma 6, it is sufficient to demonstrate that for any two identifications p, q of
type a =A b〈

transportx.F ′(x)
0

(
|p|0
−1; y

)
; |p|0

〉
∼b

〈
transportx.F ′(x)

0

(
|q|0
−1; y

)
; |q|0

〉
where ∼b is the quotient relation of F (b) and thus fb(y, p) =F (b) fb(y, q). This can be proved
by the groupoid laws of identification and the definition of ∼b; we have〈

transportx.F ′(x)
0

(
|p|0
−1; y

)
; |p|0

〉
=
〈

transportx.F ′(x)
0

(
|p|0
−1; y

)
; |p|0 • |q|0

−1
• |q|0

〉
∼b

〈
α
(

transportx.F ′(x)
0

(
|p|0
−1; y

)
, |p|0 • |q|0

−1
)

; |q|0
〉

≡
〈

transportx.F ′(x)
0

(
|p|0 • |q|0

−1; transportx.F ′(x)
0

(
|p|0
−1; y

))
; |q|0

〉
(by definition)

=
〈

transportx.F ′(x)
0

(
|p|0
−1

• |p|0 • |q|0
−1; y

)
; |q|0

〉
=
〈

transportx.F ′(x)
0

(
|q|0
−1; y

)
; |q|0

〉
.

This means fb(y,−) is (pairwise) constant, and thus by Lemma 6 there exists an extension
gb,y : ‖a =A b‖−1 → F ′(b) to the constant function fb(y,−). Putting these together, we have
the following function of type F ′(b)→ F (b):

λy.gb,y(p(a, b))

where p(x, y) is the (−1)-truncated identification between x and y derived from the con-
nectivity of A. This concludes the two functions between F ′(b) and F (b); the remaining
parts of the equivalence proof are a routine calculation. J

The proof of Theorem 4 critically relies on Lemma 6, which provides a sufficient condition
for establishing a function from types at lower truncation level to ones at higher level, which

9 The word weak here indicates that we do not know the value in the codomain, which is weaker than
other possible definitions of constancy. In particular, all functions from or to the empty type are weakly
constant.
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is usually impossible because of missing coherence conditions in codomains. The lemma
asserts that constancy can fill in the gap so that there is a way to extend a function to
truncated types. Nicolai Kraus et al. have significantly generalized the result and considered
the cases from mere propositions to types at arbitrary levels; see [20–22]. The following is a
proof of the special case (Lemma 6):

Proof of Lemma 6. Given a function f from A to B satisfying the constancy condition,
construct the set quotient A/∼ where

a ∼ b :≡ f(a) =B f(b).

One can then show that the function f factors through A/∼. Because A/∼ is provably a mere
proposition, the function f can be extended to the (−1)-truncation of A. The judgmental
equality is derived from the computation rules of truncations and set quotients on points. J

There is also an alternative argument (provided by Steve Awodey) for Theorem 4 that
proceeds as follows: In the context of A→ Set, because the codomain Set is itself a 1-type
(as the type of all n-types is an (n+ 1)-type [33, Theorem 7.1.11]), structures at dimension
higher than 1 in the domain A are irrelevant, which means that (A→ Set) ' (‖A‖1 → Set).
(This can also be argued from the universal property of the 1-truncation of A.) Moreover,
the 1-truncation of a pointed, 0-connected type A can be represented by its fundamental
group π1(A, a) where a is the point,10 and so the type ‖A‖1 → Set is really the collection
of functors from π1(A, a) (as a category) to Set, or simply π1(A, a)-sets. However, this
argument relies on several components that are still not available in the Agda development;
in comparison our proof is more elementary.

5 Universal Covering Spaces

In addition to the representation theorem, we also mechanize several well-known properties
about a special covering space, the universal covering space, which is intuitively the most
general or the most “unfolded” covering space over a space. It has two equivalent definitions,
one based on connectivity and one based on initiality (and hence the name universal). In
addition to the two definitions, when the base type is 0-connected it is also represented by
the fundamental group—which is itself a π1(A, a)-set—through the representation theorem
in Section 4; this argument was implicitly used in the calculation about the fundamental
group of the circle in [26] and here we show a general result.

In this section the base type is fixed to be a type A with a distinguished point a.

I Definition 7 (pointed covering space). A pointed covering space is a covering space whose
fiber over a is pointed.

I Definition 8 (universal covering space). A universal covering space is a pointed covering
space whose total space is 1-connected.

The reason we stipulated a point in the specific fiber over the specific point is to make
available a canonical choice among fiberwise equivalents. Considering the helix in Figure 3,

10The equivalence between ‖A‖1 and the Eilenberg-Mac Lane space K(π1(A, a), 1) was mechanized by
Floris van Doorn in the library of Lean [9, 11]. However, the authors are not aware of a published
paper discussing this result in details.
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Figure 3 The lack of a canonical equivalence.

the universal covering space over the circle whose fundamental group is integers, there
are multiple different equivalences between integers and any fiber of the helix, and there
is no canonical choice—until we pin down a particular point in the helix and demand it
be mapped to zero. To fit the definition of fiberwise equivalences, distinguished points of
different covering spaces should be in the matching fibers, and thus we further demand the
distinguished point lie in the fiber over the point a.

As hinted above, the following definition should be equivalent.

I Definition 9 (alternative definition of universal covering space). A universal covering space
is a covering space which is initial in the category of pointed covering spaces with point-
preserving fiberwise functions as morphisms.

The main observation to unify all these properties and simplify the proof is that the
covering space consisting of 0-truncated identifications from the distinguished point

P :≡ λb.‖a =A b‖0

with its own distinguished point |refla|0 in P (a) is the universal covering space. This means
that it suffices to show the covering space P is the one and only pointed covering space
satisfying the two definitions of universal covering spaces, and that it is represented by the
fundamental group. In fact, its correspondence to the fundamental group is trivial because
its fiber over the distinguished point a is exactly (the underlying set of) the fundamental
group, and it is not difficult to prove the group action is the concatenation. The rest of the
section is dedicated to showing the equivalence of two definitions.

First, we will show P is the one and only 1-connected covering space.

I Lemma 10. The total space of P is 1-connected.

Proof. To show that the total space is 1-connected, by definition it suffices to show that the
1-truncation of

∑
b:A P (b) is contractible, which means the 1-truncation is pointed and there

is an identification to any point in that truncation. The truncated pair |〈a; |refla|0〉|1 is
clearly a point, and the identification between |〈a; |refla|0〉|1 and some other truncated pair
|〈b; p〉|1 can be established by applying truncation induction and identification induction on
p, which states that it suffices to consider the case p ≡ |refla|0 (and that b ≡ a). J

I Lemma 11. Any pointed covering space whose total space is 1-connected is equivalent to
P .

Proof. Let F be a pointed covering space whose total space is 1-connected. Once again we
will follow the recipe of equivalence by establishing two functions inverse to each other. The
direction from P to F can be done fiberwise by transports; that is, for any b : A, we can
define a function from P (b) to F (b) as evaluating the transport of the distinguished point in
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F (a) along the input in P (b) (which is a truncated identification from a to b) to the fiber
F (b). Formally, it is

λp.transportx.F (x)
0 (p; a∗F )

where a∗F is the distinguished point of F over a. The other direction is to exploit the
1-connectivity: for any point y in the total space of F , there is a 0-truncated identification
from the distinguished point 〈a; a∗F 〉 to y in the total space, which can then be “projected
down” to the base type as a 0-truncated identification from the point a to the point over
which y is. It can then be shown that these two functions are inverse to each other. J

Lemmas 10 and 11 tell us P is the only 1-connected universal covering space. Thus the
remaining step is to prove that P is the initial object in the category up to homotopy. Note
that we did not explicitly define the category but directly talked about its morphisms.

I Lemma 12. For any pointed covering space F , there exists one and only one point-
preserving fiberwise function from P to F .

Proof. The existence is again by transporting the distinguished point of F along the points in
P , which are themselves 0-truncated identifications. The uniqueness is by applying truncation
induction and identification induction on points in the total space P , which suggests we only
have to consider the case |refla|0, the distinguished point of P . However, a point-preserving
function must send |refla|0 to the distinguished point of F , and thus all such functions must
agree. J

Now we are ready to conclude this section with the following theorem:

I Theorem 13. For any type A with a point a, the covering space P :≡ λb.‖a =A b‖0 of type
A with |refla|0 as its distinguished point is the universal covering. It is also represented by
π1(A, a) if A is 0-connected.

Proof. The first statement directly follows Lemmas 10, 11 and 13. The second statement
comes from the definition of P whose fiber over a is exactly the underlying set of π1(A, a). J

6 Discussion

In this paper we show that covering spaces, an important concept in homotopy theory, can be
elegantly expressed in the new framework homotopy type theory, whose synthetic nature also
makes possible Agda mechanization of length comparable to proofs on paper. The code is
available at [6], and a snapshot that matches this paper is available at [7]. The development
is broken into four files:

theorems/homotopy/CircleCover.agda: Lemma 3.
theorems/homotopy/GroupSetsRepresentCovers.agda: Theorem 4.
theorems/homotopy/AnyUniversalCoverIsPathSet.agda: Lemmas 10 and 11.
theorems/homotopy/PathSetIsInitalCover.agda: Lemma 12.

This paper is only the starting point of the study of covering spaces in homotopy type
theory. There are still many properties unproven: for example, the representation theorem in
classical theory is actually a correspondence between two categories, not just the objects. Also,
the connectivity condition may be dropped if we replace fundamental groups by fundamental
groupoids. Moreover, there are other possible generalizations such as n-covering spaces over
a space as families of n-types indexed by that space (as a type), which to our knowledge do
not immediately correspond to well-known structures in classical homotopy theory.

CVIT 2016



23:14 Covering Spaces in Homotopy Type Theory

Acknowledgements

We are grateful to Carlo Angiuli, Steve Awodey, Spencer Breiner, Guillaume Brunerie, Ulrik
Buchholtz, Daniel Grayson, Chris Kapulkin, Peter LeFanu Lumsdaine, Ed Morehouse and
Jonathan Sterling for teaching the first author the classical theory and providing useful
feedback on earlier presentations or drafts. We also thank anonymous reviewers for providing
detailed and useful comments. The category-theoretic argument for the representation
theorem was contributed by Steve Awodey.

References
1 The Coq proof assistant. URL: https://coq.inria.fr/.
2 Mathieu Anel, Georg Biedermann, Eric Finster, and Andre Joyal. The generalized Blakers–

Massey theorem. In preparation, 2016.
3 Steve Awodey and Michael A. Warren. Homotopy theoretic models of identity types.

Mathematical Proceedings of the Cambridge Philosophical Society, 146(1):45–55, 1 2009.
doi:10.1017/S0305004108001783.

4 Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman, Bas Spitters, et al.
The HoTT library. URL: https://github.com/HoTT/HoTT.

5 Guillaume Brunerie. On the homotopy groups of spheres in homotopy type theory. PhD
thesis, Université Nice Sophia Antipolis, 2016. arXiv:1606.05916v1.

6 Guillaume Brunerie, Kuen-Bang Hou (Favonia), Evan Cavallo, Jesper Cockx, Christian
Sattler, Chris Jeris, Michael Shulman, et al. Homotopy type theory in Agda. URL: https:
//github.com/HoTT/HoTT-Agda.

7 Guillaume Brunerie, Kuen-Bang Hou (Favonia), Evan Cavallo, Jesper Cockx, Christian
Sattler, Chris Jeris, Michael Shulman, et al. Homotopy type theory in Agda. doi:10.
6084/m9.figshare.5161546.

8 Ulrik Buchholtz and Egbert Rijke. The Cayley-Dickson construction in homotopy type
theory. arXiv:1610.01134v1.

9 Ulrik Buchholtz, Floris van Doorn, and Jakob von Raumer. Homotopy type theory in Lean.
To appear in the Proceedings of the 8th International Conference on Interactive Theorem
Proving. arXiv:1704.06781v1.

10 Evan Cavallo. Synthetic cohomology in homotopy type theory. Master’s thesis, 2015. URL:
http://www.cs.cmu.edu/~ecavallo/works/thesis.pdf.

11 Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The Lean theorem prover (system description). In Automated Deduction - CADE-
25, volume 9195 of Lecture Notes in Computer Science, pages 378–388, Switzerland, 2015.
Springer International Publishing. doi:10.1007/978-3-319-21401-6_26.

12 Nicola Gambino and Richard Garner. The identity type weak factorisation system. Theor-
etical Computer Science, 409(1):94–109, 2008. doi:10.1016/j.tcs.2008.08.030.

13 Jean-Yves Girard. Interprétation Fonctionnelle et élimination des Coupures de
l’Arithmétique d’Ordre Supérieur. PhD thesis, Université Paris 7, 1972.

14 Allen Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, UK, 2002.
URL: http://www.math.cornell.edu/~hatcher/AT/ATpage.html.

15 Kuen-Bang Hou (Favonia). Covering spaces in homotopy type theory. In Maria del Mar
González, Paul C. Yang, Nicola Gambino, and Joachim Kock, editors, Extended Abstracts
Fall 2013: Geometrical Analysis; Type Theory, Homotopy Theory and Univalent Founda-
tions, pages 77–82, Cham, 2015. Birkhäuser. doi:10.1007/978-3-319-21284-5_15.

16 Kuen-Bang Hou (Favonia), Eric Finster, Daniel R. Licata, and Peter LeFanu Lumsdaine.
A mechanization of the Blakers–Massey connectivity theorem in homotopy type theory.

https://coq.inria.fr/
http://dx.doi.org/10.1017/S0305004108001783
https://github.com/HoTT/HoTT
http://arxiv.org/abs/1606.05916v1
https://github.com/HoTT/HoTT-Agda
https://github.com/HoTT/HoTT-Agda
http://dx.doi.org/10.6084/m9.figshare.5161546
http://dx.doi.org/10.6084/m9.figshare.5161546
http://arxiv.org/abs/1610.01134v1
http://arxiv.org/abs/1704.06781v1
http://www.cs.cmu.edu/~ecavallo/works/thesis.pdf
http://dx.doi.org/10.1007/978-3-319-21401-6_26
http://dx.doi.org/10.1016/j.tcs.2008.08.030
http://www.math.cornell.edu/~hatcher/AT/ATpage.html
http://dx.doi.org/10.1007/978-3-319-21284-5_15


K. Hou (Favonia) and R. Harper 23:15

In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS ’16, pages 565–574, New York, NY, USA, 2016. ACM. doi:10.1145/2933575.
2934545.

17 Kuen-Bang Hou (Favonia) and Michael Shulman. The Seifert-van Kampen theorem in
homotopy type theory. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL
Annual Conference on Computer Science Logic (CSL 2016), volume 62 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 22:1–22:16, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:http://dx.doi.org/10.4230/
LIPIcs.CSL.2016.22.

18 Antonius J. C. Hurkens. A simplification of Girard’s paradox. In Typed Lambda Calculi and
Applications, volume 902 of Lecture Notes in Computer Science, pages 266–278. Springer,
Berlin, Heidelberg, 1995. doi:10.1007/BFb0014058.

19 Krzysztof Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of univalent found-
ations (after Voevodsky), 2012. arXiv:1211.2851v4.

20 Nicolai Kraus. The general universal property of the propositional truncation. arXiv:
1411.2682v3.

21 Nicolai Kraus, Martín Hötzel Escardó, Thierry Coquand, and Thorsten Altenkirch. Notions
of anonymous existence in Martin-Löf type theory. arXiv:1610.03346v1.

22 Nicolai Kraus, Martín Hötzel Escardó, Thierry Coquand, and Thorsten Altenkirch. Gener-
alizations of Hedberg’s theorem. In Typed Lambda Calculi and Applications, 11th Interna-
tional Conference, TLCA 2013, Eindhoven, The Netherlands, June 26-28, 2013. Proceed-
ings, pages 173–188, 2013. doi:10.1007/978-3-642-38946-7_14.

23 Daniel R. Licata and Guillaume Brunerie. πn(sn) in homotopy type theory. In Georges
Gonthier and Michael Norrish, editors, Certified Programs and Proofs: Third International
Conference, CPP 2013, pages 1–16, Cham, 2013. Springer International Publishing. doi:
10.1007/978-3-319-03545-1_1.

24 Daniel R. Licata and Guillaume Brunerie. A cubical approach to synthetic homotopy theory.
In Proceedings of the 2015 30th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), LICS ’15, pages 92–103, Washington, DC, USA, 2015. IEEE Computer
Society. doi:10.1109/LICS.2015.19.

25 Daniel R. Licata and Eric Finster. Eilenberg-MacLane spaces in homotopy type theory.
In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), pages 66:1–66:9, New York, NY, USA, 2014. ACM.
doi:10.1145/2603088.2603153.

26 Daniel R. Licata and Michael Shulman. Calculating the fundamental group of the circle in
homotopy type theory. In Proceedings of the 2013 28th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’13, pages 223–232, Washington, DC, USA, 2013. IEEE
Computer Society. doi:10.1109/LICS.2013.28.

27 Peter LeFanu Lumsdaine. Higher inductive types: a tour of the
menagerie. URL: https://homotopytypetheory.org/2011/04/24/
higher-inductive-types-a-tour-of-the-menagerie/.

28 Peter LeFanu Lumsdaine. Weak ω-categories from intensional type theory. In Typed Lambda
Calculi and Applications, volume 5608 of Lecture Notes in Computer Science, pages 172–187.
Springer, 2009. doi:10.1007/978-3-642-02273-9_14.

29 Per Martin-Löf. An intuitionistic theory of types: Predicative part. In Logic Colloquium
’73, Proceedings of the Logic Colloquium, volume 80 of Studies in Logic and the Foundations
of Mathematics, pages 73–118. Elsevier, 1975. doi:10.1016/S0049-237X(08)71945-1.

CVIT 2016

http://dx.doi.org/10.1145/2933575.2934545
http://dx.doi.org/10.1145/2933575.2934545
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.CSL.2016.22
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.CSL.2016.22
http://dx.doi.org/10.1007/BFb0014058
http://arxiv.org/abs/1211.2851v4
http://arxiv.org/abs/1411.2682v3
http://arxiv.org/abs/1411.2682v3
http://arxiv.org/abs/1610.03346v1
http://dx.doi.org/10.1007/978-3-642-38946-7_14
http://dx.doi.org/10.1007/978-3-319-03545-1_1
http://dx.doi.org/10.1007/978-3-319-03545-1_1
http://dx.doi.org/10.1109/LICS.2015.19
http://dx.doi.org/10.1145/2603088.2603153
http://dx.doi.org/10.1109/LICS.2013.28
https://homotopytypetheory.org/2011/04/24/higher-inductive-types-a-tour-of-the-menagerie/
https://homotopytypetheory.org/2011/04/24/higher-inductive-types-a-tour-of-the-menagerie/
http://dx.doi.org/10.1007/978-3-642-02273-9_14
http://dx.doi.org/10.1016/S0049-237X(08)71945-1


23:16 Covering Spaces in Homotopy Type Theory

30 Ulf Norell. Towards a practical programming language based on dependent type theory.
PhD thesis, Chalmers University of Technology, 2007. URL: http://www.cse.chalmers.
se/~ulfn/papers/thesis.html.

31 Charles Rezk. Proof of the Blakers-Massey theorem. Prepublished, 2015. URL: http:
//www.math.uiuc.edu/~rezk/freudenthal-and-blakers-massey.pdf.

32 Egbert Rijke. Homotopy type theory. Master’s thesis, Utrecht University, 2012. URL:
http://hottheory.files.wordpress.com/2012/08/hott2.pdf.

33 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations for
Mathematics. Institute for Advanced Study, git commit hash g662cdd8 edition, 2013. URL:
http://homotopytypetheory.org/book.

34 Benno van den Berg and Richard Garner. Types are weak ω-groupoids. Proceedings of the
London Mathematical Society, 102(2):370–394, 2011. doi:10.1112/plms/pdq026.

35 Benno van den Berg and Richard Garner. Topological and simplicial models of identity
types. ACM Transactions on Computational Logic, 13(1):3:1–3:44, 2012. doi:10.1145/
2071368.2071371.

36 Vladimir Voevodsky. A very short note on homotopy λ-calculus, 09 2006. URL: http:
//www.math.ias.edu/vladimir/files/2006_09_Hlambda.pdf.

37 Jakob von Raumer. Formalization of non-abelian topology for homotopy type theory.
Master’s thesis, Karlsruhe Institute of Technology, 2015. URL: http://von-raumer.de/
msc-thesis.pdf.

38 Michael A. Warren. Homotopy theoretic aspects of constructive type theory. PhD thesis,
Carnegie Mellon University, 2008. URL: http://mawarren.net/papers/phd.pdf.

http://www.cse.chalmers.se/~ulfn/papers/thesis.html
http://www.cse.chalmers.se/~ulfn/papers/thesis.html
http://www.math.uiuc.edu/~rezk/freudenthal-and-blakers-massey.pdf
http://www.math.uiuc.edu/~rezk/freudenthal-and-blakers-massey.pdf
http://hottheory.files.wordpress.com/2012/08/hott2.pdf
http://homotopytypetheory.org/book
http://dx.doi.org/10.1112/plms/pdq026
http://dx.doi.org/10.1145/2071368.2071371
http://dx.doi.org/10.1145/2071368.2071371
http://www.math.ias.edu/vladimir/files/2006_09_Hlambda.pdf
http://www.math.ias.edu/vladimir/files/2006_09_Hlambda.pdf
http://von-raumer.de/msc-thesis.pdf
http://von-raumer.de/msc-thesis.pdf
http://mawarren.net/papers/phd.pdf

	Introduction
	Type-Theoretic Notation and Background
	Sums and Products
	Identification
	Universes, Equivalence and Univalence
	Truncation and Connectivity
	Set Quotients
	Fundamental Groups and Truncated Identification
	Implicit Coercion

	Comparison with Classical Definition
	Representation Theorem
	Universal Covering Spaces
	Discussion

