Covering Spaces in Homotopy Type Theory

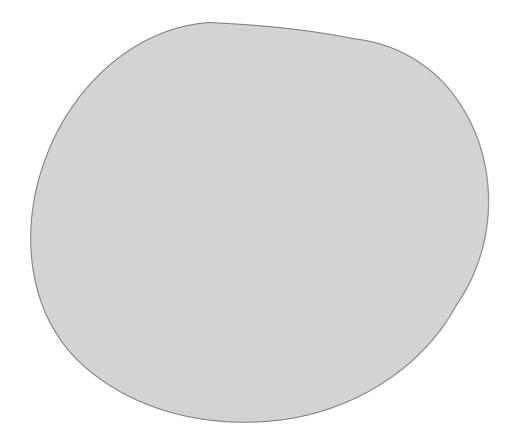
Favonia Robert Harper

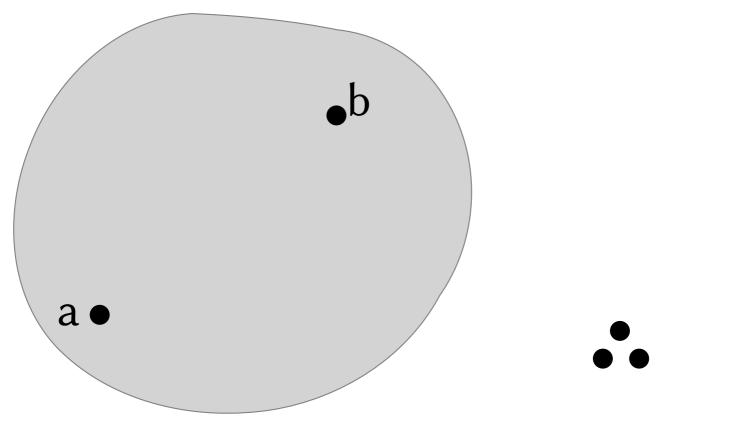
Carnegie Mellon University {favonia,rwh}@cs.cmu.edu

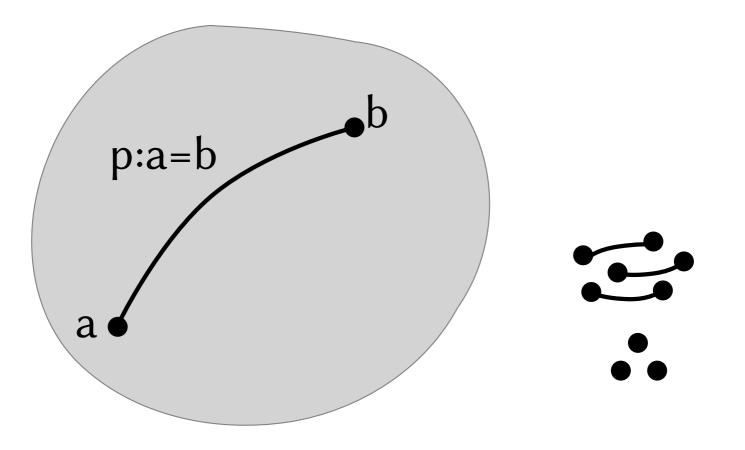
This material is based upon work supported by the National Science Foundation under Grant No. 1116703.

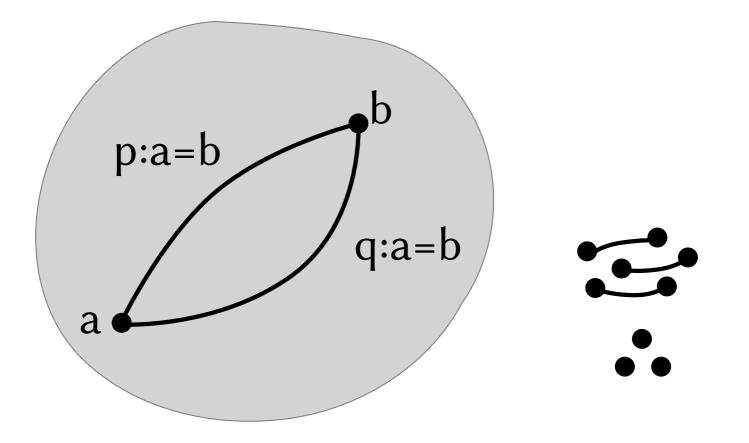
Homotopy Type Theory (HoTT)

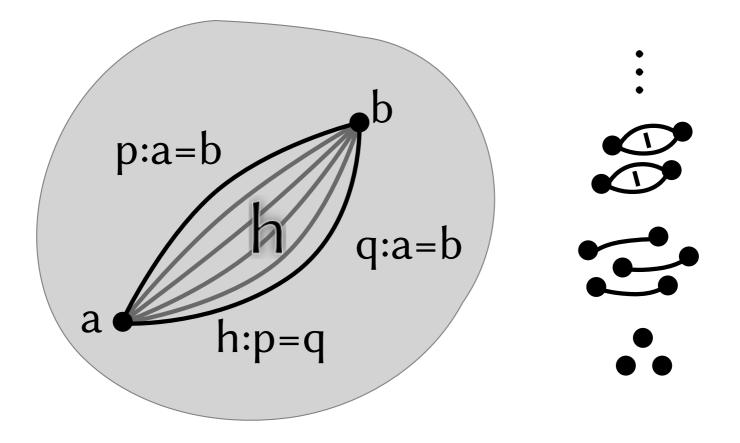
A	Туре	Space
a : A	Term	Point
$f: A \longrightarrow B$	Function	Continuous Mapping
$C: A \rightarrow Type$	Dependent Type	Fibration
C(a)		Fiber
$a =_A b$	Identity	Path

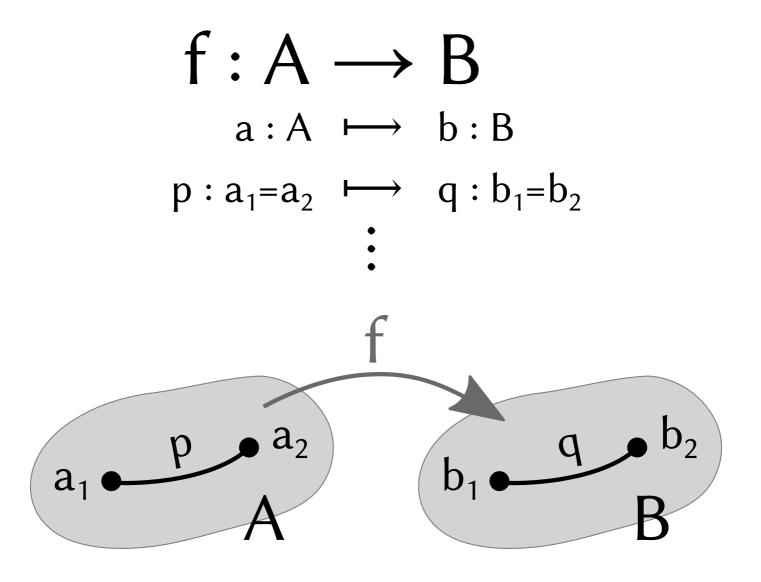








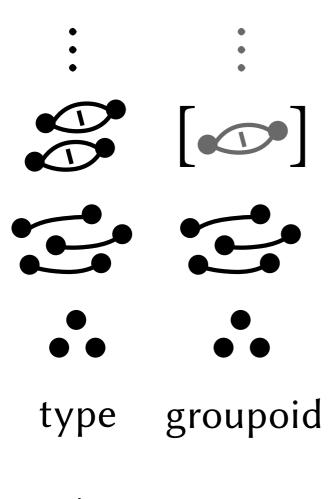


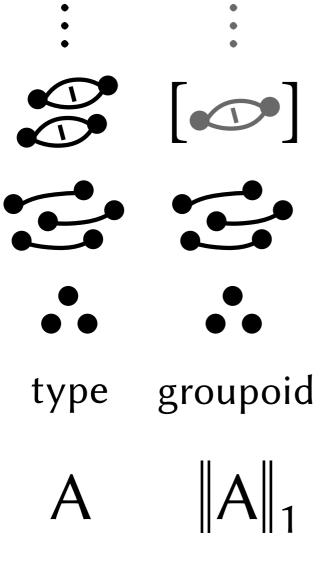


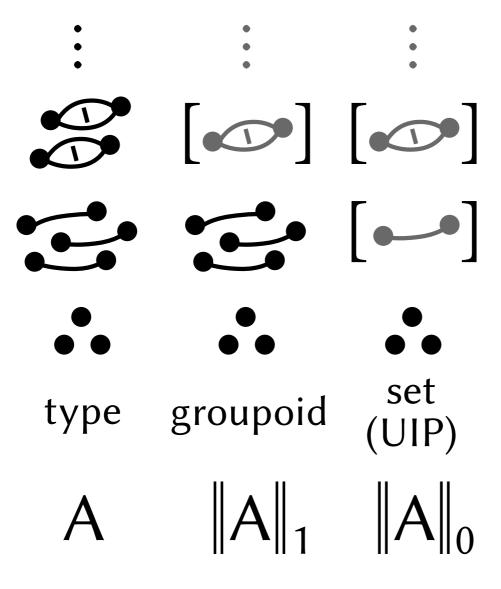
Δ

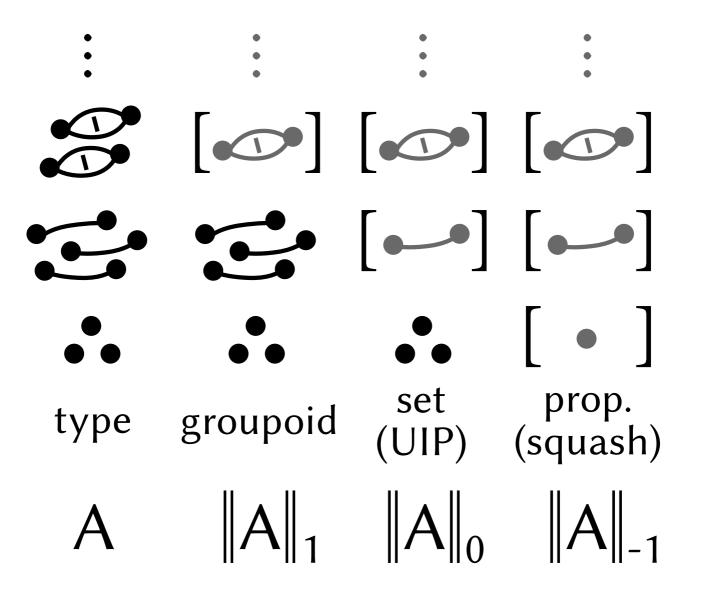
••• type

A







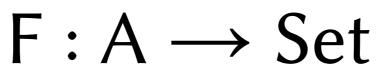


Covering Spaces

Continuously changing families of sets Classical definition:

A covering space of A is a space C together with a continuous surjective map $p: C \rightarrow A$, such that for every $a \in A$, there exists an open neighborhood U of a, such that $p^{-1}(U)$ is a union of disjoint open sets in A, each of which is mapped homeomorphically onto U by p.

HoTT definition:



Question: Is it correct (up to homotopy)?

Covering Spaces

 $F: A \longrightarrow Set$ $a: A \longmapsto F(a): Set$ $p: a_1=a_2 \longmapsto iso: F(a_1)=F(a_2)$ $q: p_1=p_2 \longmapsto (trivial)$

Classification Theorem

Suppose A is pointed (a_0) and connected.

 $F : A \longrightarrow Set$ 12 $a_0: A \longrightarrow F(a_0): Set$ $loop: a_0 = a_0 \longrightarrow auto: F(a_0) = F(a_0)$ This is an action of $\|a_0=a_0\|_0$ on $F(a_0)$. $\|a_0 = a_0\|_0$ is the fundamental group $\pi_1(A, a_0)$.

Classification Theorem

Suppose A is pointed (a_0) and connected.

$$(A \rightarrow Set) \simeq \pi_1(A, a_0)$$
-Set

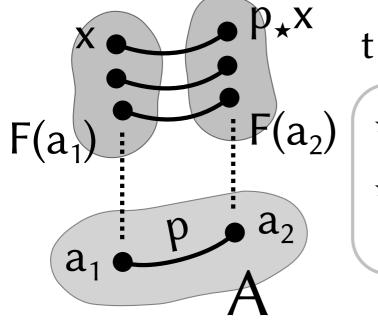
Pointed (a_0) and connected: $(a_0 : A) \times ((x : A) \rightarrow (y : A) \rightarrow ||x = y||_{-1})$ Fundamental group $\pi_1(A, a_0)$: $||a_0 = a_0||_0$ G-Set: $(X : Set) \times (\alpha : G \rightarrow (X \rightarrow X)) \times (\alpha \text{ unit } = \text{id}) \times (\alpha (g_1 \cdot g_2) = \alpha g_1 \circ \alpha g_2)$

$(A \rightarrow Set) \simeq \pi_1(A, a_0)$ -Set

$(A \longrightarrow Set) \simeq \pi_1(A, a_0) - Set$ $F \longmapsto (F(a_0), \star_0, ...)$

Suppose $a_0 : A$ and $(x : A) \rightarrow (y : A) \rightarrow ||x = y||_{-1}$.

$$(A \longrightarrow Set) \simeq \pi_1(A, a_0) - Set$$
$$F \longmapsto (F(a_0), \star_0, ...)$$

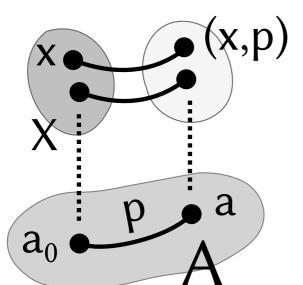


10

$(A \rightarrow Set) \simeq \pi_1(A, a_0)$ -Set

$$F \longmapsto (F(a_0), \star_0, ...)$$

?
$$\longleftrightarrow (X, \alpha, -, -)$$



Idea: formal transports

$(A \longrightarrow Set) \simeq \pi_1(A, a_0) - Set$ $F \longmapsto (F(a_0), \star_0, ...)$ $R_{X,\alpha} \longleftrightarrow (X, \alpha, -, -)$

 $R_{X,\alpha}(a) := X \times ||a_0 = a||_0$ quotiented by some relation ~.

$(A \longrightarrow Set) \simeq \pi_1(A, a_0) - Set$ $F \longmapsto (F(a_0), \star_0, ...)$ $R_{X,\alpha} \longleftrightarrow (X, \alpha, -, -)$

 $R_{X,\alpha}(a) := X \times ||a_0 = a||_0$ quotiented by some relation ~.

Goal: $F = R_{F(a0),\star 0}$

 $F(a) \simeq F(a_0) \times ||a_0 = a||_0$ quotiented by some relation ~.

Goal:
$$F = R_{F(a0),\star 0}$$

 $F(a) \simeq F(a_0) \times ||a_0 = a||_0$ quotiented by some relation ~.

$$p_{\star 0}x \leftarrow (x, p)$$

Goal:
$$F = R_{F(a0),\star 0}$$

 $F(a) \simeq F(a_0) \times ||a_0 = a||_0$ quotiented by some relation ~.

$$p_{\star 0} \mathbf{x} \quad \longleftrightarrow \quad (\mathbf{x}, \mathbf{p})$$
$$\mathbf{x} \quad \longmapsto \quad (\mathbf{q}^{-1} \mathbf{x}, \mathbf{q})?$$

We only have $||a_0 = a||_{-1}$ but need $q : ||a_0 = a||_{0}$.

Goal:
$$F = R_{F(a0),\star 0}$$

 $F(a) \simeq F(a_0) \times ||a_0 = a||_0$ quotiented by some relation ~.

$$p_{\star 0} \mathbf{x} \quad \longleftrightarrow \quad (\mathbf{x}, \mathbf{p})$$
$$\mathbf{x} \quad \longmapsto \quad (\mathbf{q}^{-1} \mathbf{x}, \mathbf{q})?$$

We only have $||a_0 = a||_{-1}$ but need $q : ||a_0 = a||_{0}$.

Lemma: If $(q_1^{-1} * 0^* x, q_1) = (q_2^{-1} * 0^* x, q_2)$ then $||a_0 = a||_{-1}$ is fine.

Goal: $F = R_{F(a0),\star 0}$

 $F(a) \simeq F(a_0) \times ||a_0 = a||_0 \text{ quotiented by some relation } \sim.$ Wants $(q_1^{-1} \star_0 x, q_1) = (q_2^{-1} \star_0 x, q_2).$

Goal: $F = R_{F(a0),\star 0}$

 $F(a) \simeq F(a_0) \times ||a_0 = a||_0 \text{ quotiented by some relation } \sim.$ Wants $(q_1^{-1} * 0 x, q_1) = (q_2^{-1} * 0 x, q_2).$

$$(\alpha \text{ loop } x, p) \sim (x, \text{ loop } p)$$

Intuition: $p_{\star 0}(\text{loop}_{\star 0}x) = (\text{loop } p)_{\star 0}x$

$$(q_1^{-1} * 0^* x, q_1) = (q_1^{-1} * 0^* x, (q_1 • q_2^{-1}) • q_2)$$

= $((q_1 • q_2^{-1}) * 0(q_1 * 0^* x), q_2) = (q_2^{-1} * 0^* x, q_2)$

$(A \longrightarrow Set) \simeq \pi_1(A, a_0) - Set$ $F \longmapsto (F(a_0), \star_0, ...)$ $R_{X,\alpha} \longleftrightarrow (X, \alpha, -, -)$ $R_{X,\alpha}(a) := X \times ||a_0 = a||_0 \text{ quotiented by}$

 $(\alpha \text{ loop } x, \text{ path}) \sim (x, \text{ loop } \bullet \text{ path})$

$$(A \longrightarrow Set) \simeq \pi_1(A, a_0) - Set$$

$$F \longmapsto (F(a_0), \star_0, ...)$$

$$R_{X,\alpha} \longleftrightarrow (X, \alpha, -, -)$$

$$R_{X,\alpha}(a) := X \times ||a_0 = a||_0 \text{ quotiented by}$$

$$(\alpha \text{ loop } x, \text{ path}) \sim (x, \text{ loop } \bullet \text{ path})$$

The other round trip is easy. (G-sets \rightarrow covering spaces \rightarrow G-sets)

Summary

- A simple formulation: $A \rightarrow Set$.
- Type equivalence of $A \rightarrow Set$ and $\pi_1(A)$ -Set.

Summary

- A simple formulation: $A \rightarrow Set$.
- Type equivalence of $A \rightarrow Set$ and $\pi_1(A)$ -Set.

Notes

- Other theorems (universal coverings, categories).
- Fibers need not to be decidable types.
 - refeath-constant" spaces, not just discrete ones?
- A \rightarrow Groupoid?

Summary

- A simple formulation: $A \rightarrow Set$.
- Type equivalence of $A \rightarrow Set$ and $\pi_1(A)$ -Set.

Notes

- Other theorems (universal coverings, categories).
- Fibers need not to be decidable types.
 - refeath-constant" spaces, not just discrete ones?
- A \rightarrow Groupoid?

Thank you

Acknowledgements: Carlo Angiuli, Steve Awodey, Andrej Bauer, Spencer Breiner, Guillaume Brunerie, Daniel Grayson, Chris Kapulkin, Nicolai Kraus, Peter LeFanu Lumsdaine and Ed Morehouse