Covering Spaces in Homotopy Type Theory

Favonia Robert Harper

Carnegie Mellon University
\{favonia,rwh\}@cs.cmu.edu
This material is based upon work supported by the National Science Foundation under Grant No. 1116703.

Homotopy Type Theory (нотт)

A
$a: A$
$f: A \rightarrow B$
$C: A \rightarrow$ Type Dependent Type
$C(a)$
$a={ }_{A} b$

Type
Term
Function

Identity

Space
Point
Continuous Mapping
Fibration
Fiber
Path

Every type is an ∞-groupoid

3

Every type is an ∞-groupoid

 -ba•
\therefore

3

Every type is an ∞-groupoid

3

Every type is an ∞-groupoid

3

Every type is an ∞-groupoid

3

$$
\begin{aligned}
f: A & \longrightarrow B \\
a: A & \longmapsto b: B \\
p: a_{1}=a_{2} & \longmapsto q: b_{1}=b_{2}
\end{aligned}
$$

type groupoid
(UIP)

Covering Spaces

Continuously changing families of sets
Classical definition:
A covering space of A is a space C together with a continuous surjective map piC $\rightarrow A$, such that for every a $\in A$, there exists an open neighborhood U of a, such that $p^{-1}(U)$ is a union of disjoint open sets in A, each of which is mapped homeomorphically onto U by p.
MoT definition:

$$
F: A \longrightarrow \text { Set }
$$

Question: Is it correct (up to homotopy)?

Covering Spaces

$$
\begin{aligned}
\mathrm{F}: A & \longrightarrow \text { Set } \\
\mathrm{a}: \mathrm{A} & \longmapsto \mathrm{~F}(\mathrm{a}): \text { Set } \\
\mathrm{p}: \mathrm{a}_{1}=\mathrm{a}_{2} & \longmapsto \text { iso }: \mathrm{F}\left(\mathrm{a}_{1}\right)=\mathrm{F}\left(\mathrm{a}_{2}\right) \\
\mathrm{q}: \mathrm{p}_{1}=\mathrm{p}_{2} & \longmapsto \text { (trivial) }
\end{aligned}
$$

Classification Theorem

Suppose A is pointed (a_{0}) and connected.

$$
F: A \underset{\mathrm{R}}{\mathrm{~A}} \text { Set }
$$

$$
\mathrm{a}_{0}: \mathrm{A} \longmapsto \mathrm{~F}\left(\mathrm{a}_{0}\right): \text { Set }
$$

$$
\text { loop : } \mathrm{a}_{0}=\mathrm{a}_{0} \longmapsto \text { auto }: \mathrm{F}\left(\mathrm{a}_{0}\right)=\mathrm{F}\left(\mathrm{a}_{0}\right)
$$

This is an action of $\left\|a_{0}=a_{0}\right\|_{0}$ on $F\left(a_{0}\right)$. $\left\|a_{0}=a_{0}\right\|_{0}$ is the fundamental group $\pi_{1}\left(A, a_{0}\right)$.

Classification Theorem

Suppose A is pointed $\left(a_{0}\right)$ and connected.

$$
(\mathrm{A} \longrightarrow \operatorname{Set}) \simeq \pi_{1}\left(\mathrm{~A}, \mathrm{a}_{0}\right)-\text { Set }
$$

Pointed (a_{0}) and connected:

$$
\left(a_{0}: A\right) \times\left((x: A) \longrightarrow(y: A) \rightarrow\|x=y\|_{-1}\right)
$$

Fundamental group $\pi_{1}\left(\mathrm{~A}, \mathrm{a}_{0}\right):\left\|\mathrm{a}_{0}=\mathrm{a}_{0}\right\|_{0}$
G-Set: $(X: S e t) \times(\alpha: G \rightarrow(X \rightarrow X)) \times$

$$
(\alpha \text { unit }=i d) \times\left(\alpha\left(g_{1} \cdot g_{2}\right)=\alpha g_{1} \circ \alpha g_{2}\right)
$$

Suppose $\mathrm{a}_{0}: \mathrm{A}$ and $(\mathrm{x}: \mathrm{A}) \rightarrow(\mathrm{y}: \mathrm{A}) \rightarrow\|\mathrm{x}=\mathrm{y}\|_{-1}$.
$(A \rightarrow$ Set $) \simeq \pi_{1}\left(A, a_{0}\right)$-Set

Suppose $a_{0}: A$ and $(x: A) \longrightarrow(y: A) \rightarrow\|x=y\|_{-1}$.
$(\mathrm{A} \longrightarrow$ Set $) \simeq \pi_{1}\left(\mathrm{~A}, \mathrm{a}_{0}\right)$-Set
$\mathrm{F} \longmapsto\left(\mathrm{F}\left(\mathrm{a}_{0}\right), \star_{0}, \ldots\right)$

Suppose $a_{0}: A$ and $(x: A) \longrightarrow(y: A) \longrightarrow\|x=y\|_{-1}$.
$(A \rightarrow S e t) \simeq \pi_{1}\left(A, a_{0}\right)$-Set

$$
\mathrm{F} \longmapsto\left(\mathrm{~F}\left(\mathrm{a}_{0}\right), \star_{0}, \ldots\right)
$$

10

Suppose $a_{0}: A$ and $(x: A) \longrightarrow(y: A) \rightarrow\|x=y\|_{-1}$.
$(\mathrm{A} \longrightarrow$ Set $) \simeq \pi_{1}\left(\mathrm{~A}, \mathrm{a}_{0}\right)-$ Set

$$
\begin{aligned}
\mathrm{F} & \longmapsto\left(\mathrm{~F}\left(\mathrm{a}_{0}\right), \star_{0}, \ldots\right) \\
? & \longmapsto(\mathrm{X}, \alpha,-,-)
\end{aligned}
$$

Idea: formal transports

Suppose $a_{0}: A$ and $(x: A) \longrightarrow(y: A) \longrightarrow\|x=y\|_{-1}$. $(\mathrm{A} \longrightarrow$ Set $) \simeq \pi_{1}\left(\mathrm{~A}, \mathrm{a}_{0}\right)-$ Set

$$
\begin{aligned}
\mathrm{F} & \longmapsto\left(\mathrm{~F}\left(\mathrm{a}_{0}\right), \star_{0}, \ldots\right) \\
\mathrm{R}_{\mathrm{X}, \alpha} & \longleftrightarrow(\mathrm{X}, \alpha,-,-)
\end{aligned}
$$

$\mathrm{R}_{\mathrm{X}, \mathrm{\alpha}}(\mathrm{a}): \equiv \mathrm{X} \times\left\|\mathrm{a}_{0}=\mathrm{a}\right\|_{0}$ quotiented by some relation \sim.

Suppose $a_{0}: A$ and $(x: A) \longrightarrow(y: A) \longrightarrow\|x=y\|_{-1}$.
$(A \rightarrow S e t) \simeq \pi_{1}\left(A, a_{0}\right)$-Set

$$
\begin{aligned}
\mathrm{F} & \longmapsto\left(\mathrm{~F}\left(\mathrm{a}_{0}\right), \star_{0}, \ldots\right) \\
\mathrm{R}_{\mathrm{X}, \alpha} & \longleftrightarrow(\mathrm{X}, \alpha,-,-)
\end{aligned}
$$

$R_{X, \alpha}(a): \equiv X \times\left\|a_{0}=a\right\|_{0}$ quotiented by some relation \sim.

$$
\text { Goal: } F=R_{F(a 0), \star 0}
$$

$F(a) \simeq F\left(a_{0}\right) \times\left\|a_{0}=a\right\|_{0}$ quotiented by some relation \sim.

Suppose $a_{0}: A$ and $(x: A) \longrightarrow(y: A) \rightarrow\|x=y\|_{-1}$.

$$
\text { Goal: } F=R_{F(a 0), \star 0}
$$

$F(a) \simeq F\left(a_{0}\right) \times\left\|a_{0}=a\right\|_{0}$ quotiented by some relation \sim.

$$
p_{\star 0} x \longleftrightarrow(x, p)
$$

Suppose $a_{0}: A$ and $(x: A) \longrightarrow(y: A) \longrightarrow\|x=y\|_{-1}$.

$$
\text { Goal: } F=R_{F(a 0), \star 0}
$$

$F(a) \simeq F\left(a_{0}\right) \times\left\|a_{0}=a\right\|_{0}$ quotiented by some relation \sim.

$$
\begin{aligned}
p_{\star 0} x & \longleftrightarrow(x, p) \\
x & \longmapsto\left(q_{\star 0}^{-1} x, q\right) ?
\end{aligned}
$$

We only have $\left\|\mathrm{a}_{0}=\mathrm{a}\right\|_{-1}$ but need $\mathrm{q}:\left\|\mathrm{a}_{0}=\mathrm{a}\right\|_{0}$.

Suppose $a_{0}: A$ and $(x: A) \longrightarrow(y: A) \rightarrow\|x=y\|_{-1}$.

$$
\text { Goal: } F=R_{F(a 0), \star 0}
$$

$F(a) \simeq F\left(a_{0}\right) \times\left\|a_{0}=a\right\|_{0}$ quotiented by some relation \sim.

$$
\begin{aligned}
p_{\star 0} x & \longleftrightarrow(x, p) \\
x & \longmapsto\left(q_{\star 0}^{-1} x, q\right) ?
\end{aligned}
$$

We only have $\left\|\mathrm{a}_{0}=\mathrm{a}\right\|_{-1}$ but need $\mathrm{q}:\left\|\mathrm{a}_{0}=\mathrm{a}\right\|_{0}$.
Lemma: If $\left(\mathrm{q}_{1}{ }^{-1}{ }_{\star 0} \mathrm{x}, \mathrm{q}_{1}\right)=\left(\mathrm{q}_{2}{ }^{-1}{ }_{\star 0} \mathrm{x}, \mathrm{q}_{2}\right)$ then $\left\|\mathrm{a}_{0}=\mathrm{a}\right\|_{-1}$ is fine.

Suppose $a_{0}: A$ and $(x: A) \longrightarrow(y: A) \longrightarrow\|x=y\|_{-1}$.

$$
\text { Goal: } F=R_{F(a 0), \star 0}
$$

$F(a) \simeq F\left(a_{0}\right) \times\left\|a_{0}=a\right\|_{0}$ quotiented by some relation \sim.
Wants $\left(\mathrm{q}_{1}{ }^{-1}{ }_{\star 0} \mathrm{x}, \mathrm{q}_{1}\right)=\left(\mathrm{q}_{2}{ }^{-1}{ }_{\star 0} \mathrm{x}, \mathrm{q}_{2}\right)$.

Suppose $a_{0}: A$ and $(x: A) \longrightarrow(y: A) \longrightarrow\|x=y\|_{-1}$.

$$
\text { Goal: } F=R_{F(a 0), \star 0}
$$

$F(a) \simeq F\left(a_{0}\right) \times\left\|a_{0}=a\right\|_{0}$ quotiented by some relation \sim.
Wants $\left(\mathrm{q}_{1}^{-1}{ }_{\star 0} \mathrm{x}, \mathrm{q}_{1}\right)=\left(\mathrm{q}_{2}{ }^{-1}{ }_{\star 0} \mathrm{x}, \mathrm{q}_{2}\right)$.

$$
(\alpha \operatorname{loop} x, p) \sim(x, \operatorname{loop} \cdot p)
$$

Intuition: $p_{\star 0}\left(\right.$ loop $\left._{\star 0} x\right)=(\text { loop }-p)_{\star 0} x$

$$
\begin{aligned}
\left(\mathrm{q}_{1}^{-1} \star 0 \mathrm{x}, \mathrm{q}_{1}\right)= & \left(\mathrm{q}_{1}^{-1} \star{ }^{-1} \mathrm{x},\left(\mathrm{q}_{1} \cdot \mathrm{q}_{2}^{-1}\right) \cdot \mathrm{q}_{2}\right) \\
& =\left(\left(\mathrm{q}_{1} \cdot \mathrm{q}_{2}^{-1}\right)_{\star 0}\left(\mathrm{q}_{1 \star 0} \mathrm{x}\right), \mathrm{q}_{2}\right)=\left(\mathrm{q}_{2}^{-1}{ }_{\star 0} \mathrm{x}, \mathrm{q}_{2}\right)
\end{aligned}
$$

Suppose $a_{0}: A$ and $(x: A) \longrightarrow(y: A) \longrightarrow\|x=y\|_{-1}$.
$(\mathrm{A} \longrightarrow$ Set $) \simeq \pi_{1}\left(\mathrm{~A}, \mathrm{a}_{0}\right)$-Set

$$
\mathrm{F} \longmapsto\left(\mathrm{~F}\left(\mathrm{a}_{0}\right), \star_{0}, \ldots\right)
$$

$$
\mathrm{R}_{\mathrm{X}, \alpha} \longleftarrow(\mathrm{X}, \alpha,-,-)
$$

$\mathrm{R}_{\mathrm{X}, \mathrm{\alpha}}(\mathrm{a}): \equiv \mathrm{X} \times\left\|\mathrm{a}_{0}=\mathrm{a}\right\|_{0}$ quotiented by
(α loop x, path $) \sim(x$, loop - path $)$

Suppose $a_{0}: A$ and $(x: A) \longrightarrow(y: A) \longrightarrow\|x=y\|_{-1}$. $(\mathrm{A} \longrightarrow$ Set $) \simeq \pi_{1}\left(\mathrm{~A}, \mathrm{a}_{0}\right)$-Set

$$
\mathrm{F} \longmapsto\left(\mathrm{~F}\left(\mathrm{a}_{0}\right), \star_{0}, \ldots\right)
$$

$$
\mathrm{R}_{\mathrm{X}, \alpha} \hookleftarrow(\mathrm{X}, \alpha,-,-)
$$

$\mathrm{R}_{\mathrm{X}, \alpha}(\mathrm{a}): \equiv \mathrm{X} \times\left\|\mathrm{a}_{0}=\mathrm{a}\right\|_{0}$ quotiented by
(α loop x, path $) \sim(x$, loop \cdot path $)$

The other round trip is easy.
(G-sets \rightarrow covering spaces \rightarrow G-sets)

Summary

- A simple formulation: A \rightarrow Set.
- Type equivalence of $A \longrightarrow$ Set and $\pi_{1}(A)$-Set.

Summary

- A simple formulation: A \rightarrow Set.
- Type equivalence of $\mathrm{A} \rightarrow$ Set and $\pi_{1}(\mathrm{~A})$-Set.

Notes

- Other theorems (universal coverings, categories).
- Fibers need not to be decidable types.
"path-constant" spaces, not just discrete ones?
- A \rightarrow Groupoid?

Summary

- A simple formulation: $A \rightarrow$ Set.
- Type equivalence of $A \rightarrow$ Set and $\pi_{1}(A)$-Set.

Notes

- Other theorems (universal coverings, categories).
- Fibers need not to be decidable types.
"path-constant" spaces, not just discrete ones?
- A \rightarrow Groupoid?
Thank you

Acknowledgements: Carlo Angiuli, Steve Awodey, Andrej Bauer, Spencer Breiner, Guillaume Brunerie,

Daniel Grayson, Chris Kapulkin, Nicolai Kraus, Peter LeFanu Lumsdaine and Ed Morehouse

