
1

Covering Spaces
in Homotopy Type Theory

Carnegie Mellon University
{favonia,rwh}@cs.cmu.edu

This material is based upon work supported by the
National Science Foundation under Grant No. 1116703.

Favonia Robert Harper

2

Homotopy Type Theory
Type Space

Function Continuous Mapping

Term Point

Dependent Type Fibration

Identity Path

Fiber

A

a : A

f : A → B

C : A → Type

C(a)

a =A b

(HoTT)

3

Every type is an ∞-groupoid

3

a

b

Every type is an ∞-groupoid

3

a

b
p:a=b

Every type is an ∞-groupoid

3

a

b

q:a=b

p:a=b

Every type is an ∞-groupoid

3

a

b

q:a=b

p:a=b

h:p=q

⋮

Every type is an ∞-groupoid

4

f : A → B
a : A

p : a1=a2 q : b1=b2

b : B⟼
⟼

a1

a2p

A

f
⋮

b1

b2q

B

5
A

⋮

type

5
A

⋮ ⋮
[]

groupoidtype

5
A ‖A‖1

⋮ ⋮
[]

groupoidtype

5
A ‖A‖1 ‖A‖0

⋮ ⋮
[]

⋮
[]
[]

set
(UIP)groupoidtype

5
A ‖A‖1 ‖A‖0 ‖A‖-1

⋮ ⋮
[]

⋮
[]
[]

⋮
[]
[]
[]

set
(UIP)groupoid prop.

(squash)type

6

Continuously changing families of sets

Covering Spaces

F : A → Set
estion: Is it correct (up to homotopy)?

Classical definition:
A covering space of A is a space C together with a continuous
surjective map p : C → A, such that for every a ∈ A, there
exists an open neighborhood U of a, such that p-1(U) is
a union of disjoint open sets in A, each of which is mapped
homeomorphically onto U by p.

HoTT definition:

7

Covering Spaces

F : A → Set
a : A

p : a1=a2 iso : F(a1)=F(a2)
F(a) : Set⟼

⟼
q : p1=p2 (trivial)⟼

⋮

8

F : A → Set

a0 : A
loop : a0=a0 auto : F(a0)=F(a0)

F(a0) : Set⟼
⟼

≃

Suppose A is pointed (a0) and connected.

Classification Theorem

This is an action of ‖a0=a0‖0 on F(a0).
‖a0=a0‖0 is the fundamental group π1(A, a0).

9

(A → Set) ≃ π1(A, a0)-Set
Suppose A is pointed (a0) and connected.

Classification Theorem

(a0 : A) × ((x : A) → (y : A) → ‖x = y‖-1)
Pointed (a0) and connected:

G-Set: (X : Set) × (α : G → (X → X)) ×
(α unit = id) × (α (g1 ∙ g2) = α g1 ∘ α g2)

Fundamental group π1(A, a0): ‖a0 = a0‖0

10

(A → Set) ≃ π1(A, a0)-Set
Suppose a0 : A and (x : A) → (y : A) → ‖x = y‖-1.

10

(A → Set) ≃ π1(A, a0)-Set
Suppose a0 : A and (x : A) → (y : A) → ‖x = y‖-1.

F (F(a0), ★0, …)⟼

10

(A → Set) ≃ π1(A, a0)-Set
Suppose a0 : A and (x : A) → (y : A) → ‖x = y‖-1.

F (F(a0), ★0, …)⟼

★0: ‖a1 = a2‖0 → F(a1) → F(a2)
(★ for set-truncated paths)a1

a2p

A

F(a2)F(a1)

x p★x

★: a1 = a2 → F(a1) → F(a2)

transport x along p (p★x)

11

(A → Set) ≃ π1(A, a0)-Set
Suppose a0 : A and (x : A) → (y : A) → ‖x = y‖-1.

F (F(a0), ★0, …)⟼

a0

ap
A

X Idea: formal transports

(x,p)x

⟼(X, α, —, —)?

12

(A → Set) ≃ π1(A, a0)-Set
Suppose a0 : A and (x : A) → (y : A) → ‖x = y‖-1.

⟼(X, α, —, —)
F (F(a0), ★0, …)⟼

RX,α(a) :≡ X × ‖a0 = a‖0 quotiented by some relation ~.

RX,α

12

(A → Set) ≃ π1(A, a0)-Set
Suppose a0 : A and (x : A) → (y : A) → ‖x = y‖-1.

⟼(X, α, —, —)
F (F(a0), ★0, …)⟼

RX,α(a) :≡ X × ‖a0 = a‖0 quotiented by some relation ~.

RX,α

Goal: F = RF(a0),★0
F(a) ≃ F(a0) × ‖a0 = a‖0 quotiented by some relation ~.

13

Suppose a0 : A and (x : A) → (y : A) → ‖x = y‖-1.

Goal: F = RF(a0),★0
F(a) ≃ F(a0) × ‖a0 = a‖0 quotiented by some relation ~.

⟼(x, p)p★0x

13

Suppose a0 : A and (x : A) → (y : A) → ‖x = y‖-1.

Goal: F = RF(a0),★0
F(a) ≃ F(a0) × ‖a0 = a‖0 quotiented by some relation ~.

⟼(x, p)p★0x

⟼ (q-1
★0x, q)?x

We only have ‖a0 = a‖-1 but need q : ‖a0 = a‖0.

13

Suppose a0 : A and (x : A) → (y : A) → ‖x = y‖-1.

Goal: F = RF(a0),★0
F(a) ≃ F(a0) × ‖a0 = a‖0 quotiented by some relation ~.

⟼(x, p)p★0x

⟼ (q-1
★0x, q)?x

We only have ‖a0 = a‖-1 but need q : ‖a0 = a‖0.

Lemma: If (q1
-1
★0x, q1) = (q2

-1
★0x, q2) then ‖a0 = a‖-1 is fine.

14

Suppose a0 : A and (x : A) → (y : A) → ‖x = y‖-1.

Goal: F = RF(a0),★0

Wants (q1
-1
★0x, q1) = (q2

-1
★0x, q2).

F(a) ≃ F(a0) × ‖a0 = a‖0 quotiented by some relation ~.

14

Suppose a0 : A and (x : A) → (y : A) → ‖x = y‖-1.

Goal: F = RF(a0),★0

Wants (q1
-1
★0x, q1) = (q2

-1
★0x, q2).

(q1
-1
★0x, q1) = (q1

-1
★0x, (q1 ▪ q2

-1) ▪ q2)
 = ((q1 ▪ q2

-1)★0(q1★0x), q2) = (q2
-1
★0x, q2)

(α loop x , p) ~ (x , loop ▪ p)
Intuition: p★0(loop★0x) = (loop ▪ p)★0x

F(a) ≃ F(a0) × ‖a0 = a‖0 quotiented by some relation ~.

15

(A → Set) ≃ π1(A, a0)-Set
Suppose a0 : A and (x : A) → (y : A) → ‖x = y‖-1.

⟼(X, α, —, —)
F (F(a0), ★0, …)⟼

RX,α(a) :≡ X × ‖a0 = a‖0 quotiented by
(α loop x , path) ~ (x , loop ▪ path)

RX,α

15

(A → Set) ≃ π1(A, a0)-Set
Suppose a0 : A and (x : A) → (y : A) → ‖x = y‖-1.

⟼(X, α, —, —)
F (F(a0), ★0, …)⟼

RX,α(a) :≡ X × ‖a0 = a‖0 quotiented by
(α loop x , path) ~ (x , loop ▪ path)

RX,α

The other round trip is easy.
(G-sets → covering spaces → G-sets)

16

- A simple formulation: A → Set.
- Type equivalence of A → Set and π1(A)-Set.

Summary

16

- A simple formulation: A → Set.
- Type equivalence of A → Set and π1(A)-Set.

Summary

- Other theorems (universal coverings, categories).
- Fibers need not to be decidable types.
 ☞ “path-constant” spaces, not just discrete ones?
- A → Groupoid?

Notes

16

Thank you
Acknowledgements: Carlo Angiuli, Steve Awodey,
Andrej Bauer, Spencer Breiner, Guillaume Brunerie,

Daniel Grayson, Chris Kapulkin, Nicolai Kraus,
Peter LeFanu Lumsdaine and Ed Morehouse

- A simple formulation: A → Set.
- Type equivalence of A → Set and π1(A)-Set.

Summary

- Other theorems (universal coverings, categories).
- Fibers need not to be decidable types.
 ☞ “path-constant” spaces, not just discrete ones?
- A → Groupoid?

Notes

