
Conference on Type Theory, Homotopy Theory and Univalent Foundations

Covering Spaces in Homotopy Type Theory

Kuen-Bang Hou (Favonia)

Department of Computer Science, Carnegie Mellon University, USA
favonia@cs.cmu.edu

This material is based upon work supported by the National Science Foundation under Grant No. 1116703.

Abstract. Covering spaces play an important role in classical homotopy theory, whose algebraic char-
acteristics have deep connections with fundamental groups of underlying spaces. It is natural to ask
whether these connections can be stated in homotopy type theory (HoTT), an exciting new framework
coming with an interpretation in homotopy theory. This report summarizes my attempt to recover the
classical results (e.g. the classification theorem) so as to explore the expressiveness of the new founda-
tion. Some interesting techniques employed in the current proofs seem applicable to other constructions
as well.

1 Introduction

Homotopy type theory (HoTT) is an exciting new interpretation of intensional type the-
ory in terms of ∞-groupoids or topological spaces up to homotopy, which provides an
abstract, synthetic framework for homotopy theory. [2–6, 8–10] Under this interpreta-
tion, types are spaces, terms are points, sets are discrete spaces (up to homotopy), and
functions are continuous maps.1 It is natural to ask whether we can restate various
homotopy-invariant concepts and theorems known in classical theories. In this report I
will explore one fundamental construct: covering spaces. It turns out that we can express
covering spaces (up to homotopy) elegantly in HoTT as follows.

Definition 1 A covering space of a type (space) A is a family of sets indexed by A.

That is, the type of covering spaces of A is simply A→ Set where Set is the type of
all sets. The key insight here is that continuity is enforced by the framework, and thus it
is sufficient to specify only the behavior on individual points. In this particular case, it is
enough to say that each fiber (without mentioning neighborhoods) of the projection is a
discrete set. To verify that this formulation matches the classical one, I proved in HoTT
the classification theorem of covering spaces, and that homotopy equivalent classes of
paths with one end fixed form a universal covering space. Let π1(A) be the fundamental
group of a pointed space A and G-Set be the type of all G-sets, the sets equipped with
an action of given group G. The classification theorem asserts the equivalence between
A→ Set and π1(A)-Set for any pointed, path-connected A.

It is worth emphasizing that every proof mentioned in this report has been fully
mechanized [1] and checked by the proof assistant Agda [7], thanks to HoTT’s ability
to express many topological concepts (paths, homotopies, truncation, connectedness,
circles, intervals, etc.) fairly easily from its axioms.

Another feature of HoTT is that, being a proof-relevant mathematics, it is able to
capture some subtleties that are not immediately visible in the traditional framework.
For example, the equivalence between A→ Set and π1(A)-Set in the classification theo-
rem will associate the π1(A) itself (as a π1(A)-set) with some universal covering space.

1Our terminology follows the HoTT book [8]; in particular, sets means types of homotopy level zero.

Research Perspectives CRM Barcelona, Fall 2013, vol. ??, in Trends in Mathematics

Centre de Recerca Matemàtica, Bellaterra (Barcelona)

1

2 Covering Spaces in Homotopy Type Theory

However, in general there are more than one such covering space and there is no contin-
uous choice among them, unless we fix one point in the associated covering space. This
fact can be elegantly stated in HoTT using truncation, due to the unification of logic and
data where theorems themselves are also spaces and they can contain different proofs as
different points.

The following sections will outline the two results of covering spaces I reproved in
HoTT, namely the classification and the universality. An interesting technical device I
used for the classification theorem will also be mentioned.

2 Classification

The goal in this section is to show that there is an equivalence between covering spaces of
a pointed, path-connected A and π1(A)-Set. The definitions of groups and G-sets closely
follow the classical ones, with the requirement that the underlying type must be a set;
A is path-connected if the 0-truncation of A (written ‖A‖0) is contractible.

Theorem 2 For any path-connected, pointed type A, (A→ Set) ' π1(A)-Set.

To establish the equivalence, it is necessary to give a map from all covering spaces
to all π1(A)-sets, and an inverse map of it. The first map can be easily constructed from
the lifting property of the given covering space (as a family of sets). More precisely,
suppose F : A→ Set is a covering space of A and a is the distinguished point of A. The
transport function transportx.F (x)(p) associates an automorphism of the set F (a) to

each loop p at a. Because F is a family of sets, the type of automorphisms of F (a) is also
a set. By the universal property of truncation, an element in the 0-truncated loop space,
π1(A), also gives rise to an automorphism of F (a). We then complete the construction
of a π1(A)-set by considering the set F (a) along with the above process as the action of
π1(A) on F (a).

The inverse map, from π1(A)-sets to covering spaces of A, is more technically in-
volved. The high-level idea is:

(1) put the given π1(A)-set as the fiber over the distinguished point of A; and
(2) forge other fibers by introducing a formal transport; and
(3) throw in equations to mimic functoriality of transport (so that the formal one

behaves as the real one).

We exploit higher-inductive types to achieve the final step. More formally, suppose a
is the distinguished point of A. Given a π1(A)-set X equipped with an action of type
X → π1(A) → X (written x · l for x : A and l : π1(A)). Let �0 be the concatenation of
two 0-truncated paths. The higher-inductive type is a family of sets ribbon indexed by
A with the following two constructors:

t :
∏

(a′:A)

X →
∥∥a =A a

′∥∥
0
→ ribbon(a′)

α :
∏

(a′:A)

∏
(x:X)

∏
(l:π1(A))

∏
(p:‖a=Aa′‖0)

t(a′)(x · l)(p) =ribbon(a′) t(a
′)(x)(l �0 p).

The constructor t is the formal transport function to forge other fibers, and α enforces
the required functoriality. Note that the formal transport t is taking a 0-truncated path
of type ‖a =A a

′‖0 so that it goes along with the π1(A)-action in the type of α.

Conference on Type Theory, Homotopy Theory and Univalent Foundations 3

Although conceptually similar to a standard argument in classical homotopy theory,
the details of this proof are quite different. For example, we do not need to (explicitly)
put a topology on the ribbon space. Because of these differences, there is only a thin
layer between these high-level ideas of the classical proof and the syntactical proof in
HoTT. As a consequence, computer-checking becomes practical for HoTT.

The remaining parts are the proof that the two maps are inverse to each other. This
is mostly straightforward except one thing: suppose we start from a covering space F :
A→ Set. We need to show that the associated ribbon and F are the same. By functional
extensionality and the Univalence Axiom, this reduces to a fiberwise equivalence between
ribbon and F . The direction from ribbon(a′) to F (a′) is to realize the formal transport
t by the real transport. The other direction from F (a′) to ribbon(a′) involves locating
a point in the fiber F (a) and a (truncated) path p : ‖a = a′‖0, as they are required by
the formal transport t. However, the formal transport t needs a 0-truncated path but
the path-connectedness condition only gives a (−1)-truncated path. There is still hope
because we can show that the α constructor forces different choices for this path to give
the same point, and thus in principle a (−1)-truncated path should suffice, which is to
say that merely the existence of such path should be sufficient for our construction. The
essence of this argument comes down to the following general lemma:

Lemma 3 (factorization of constant functions) Let f be a function of type B → C where
C is a set, and | − |−1 be the projection function from B to ‖B‖−1. If∏

b1,b2:B

f(b1) =C f(b2)

then there is a function g : ‖B‖−1 → C such that

f ≡ g ◦ | − |−1.

With B :≡ (a = a′) and the required constancy condition from the α constructor,
this lemma enables us to access the path in ‖a = a′‖−1 even though it is (−1)-truncated,
and hence completes the main proof. The proof of this lemma depends on another
high-inductive type but is beyond the scope of this report.

The final remark is that, the HoTT proof requires this factorization lemma (while
the classical proof does not) because we are actually proving a stronger theorem, in the
sense that the proof will associate “equivalent” equivalences to homotopically equivalent
pointed spaces. Intuitively, this holds because at each step of the construction, a choice
can be made in a continuous way. The factorization lemma is one of the building blocks.

3 Universality

Let A be a path-connected type with a distinguished point a. It is well-known that the
homotopy equivalence classes of paths from a in A form a universal covering space, in the
sense that it is homotopy initial in the category of pointed covering spaces of A (where
the morphisms are covering projections). This particular space can be concisely written
down in HoTT as follows:

UA :≡ λ(a′:A).
∥∥a =A a

′∥∥
0

I reproved that every simply-connected, pointed covering space of A is equivalent to
UA, and that this covering space is indeed homotopy initial (in the category mentioned
above). The proof is rather simple compared to that of the classification theorem.

4 Covering Spaces in Homotopy Type Theory

The pointedness condition of covering spaces helps us pin down one equivalence
between two universal covering spaces. Without it, there is no canonical choice among
possibly many different equivalences, and one can only show the mere existence of such.
Let F1 and F2 be the two covering spaces in discussion. The mere existence of such
equivalence can be stated in HoTT using (−1)-truncation:∥∥∥∥∥∏

a′:A

F1(a′) ' F2(a′)

∥∥∥∥∥
−1

The intuition is that, even though the choices made in the construction of the equivalences
might not all be continuous, the type representing the mere existence of it is continuous
in the parameters. This matches up with the classical existential quantifier, which only
cares about the existence of one element. In fact, one can model much classical reasoning
by truncating every theorem down to the (−1)-level. Intuitively, while the interpretation
enforces continuity, we can effectively relax that condition by a suitable truncation.

4 Conclusion and Future Work

This report confirms that one can reason about covering spaces in HoTT. There are many
interesting future directions; for example, (1) the correspondence between the category
of covering spaces and that of π1(A)-sets, not just the objects; and (2) the more general
form A→ n-Type where covering spaces are the special case where n = 0.

Acknowledgements

I want to thank Carlo Angiuli, Steve Awodey, Spencer Breiner, Guillaume Brunerie,
Daniel Grayson, Robert Harper, Chris Kapulkin, and Ed Morehouse for helping me
learn the classical theory, improve the presentation, and revise previous versions.

References

[1] HoTT library in Agda. https://github.com/HoTT/HoTT-Agda.
[2] Steve Awodey and Michael A Warren. Homotopy theoretic models of identity types. In Mathematical

proceedings of the Cambridge Philosophical Society, volume 146, pages 45–56. Cambridge University
Press, 2009.

[3] Nicola Gambino and Richard Garner. The identity type weak factorisation system. Theoretical Com-
puter Science, 409(1):94–109, 2008.

[4] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. Twenty-five
years of constructive type theory (Venice, 1995), 36:83–111, 1998.

[5] Chris Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. The simplicial model of univa-
lent foundations. arXiv preprint arXiv:1211.2851, 2012.

[6] Peter LeFanu Lumsdaine. Weak ω-categories from intensional type theory. In Typed lambda calculi
and applications, pages 172–187. Springer, 2009.

[7] Ulf Norell. Towards a practical programming language based on dependent type theory. PhD thesis,
Department of Computer Science and Engineering, Chalmers University of Technology, SE-412 96
Göteborg, Sweden, September 2007.

[8] The Univalent Foundations Program. Homotopy type theory: Univalent foundations of mathematics.
2013.

[9] Benno van den Berg and Richard Garner. Types are weak ω-groupoids. Proceedings of the London
Mathematical Society, 102(2):370–394, 2011.

[10] Michael A Warren. Homotopy theoretic aspects of constructive type theory. PhD thesis, PhD thesis,
Carnegie Mellon University, 2008.

