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Abstract
We develop the theory of (homotopy) colimits inside homotopy type theory. The heart of our work
characterizes the connection between colimits in coslices of a universe, called coslice colimits, and
colimits in the universe (i.e., ordinary colimits). To derive this characterization, we find an explicit
construction of colimits in coslices that is tailored to reveal the connection. We use the construction
to derive properties of colimits. Notably, we prove that the forgetful functor from a coslice creates
colimits over trees. We also use the construction to examine how colimits interact with orthogonal
factorization systems and with cohomology theories. As a consequence of their interaction with
orthogonal factorization systems, all pointed colimits (special kinds of coslice colimits) preserve
n-connectedness, which implies that higher groups are closed under colimits on directed graphs. We
have formalized our main construction of the colimit functor in Agda.
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1 Introduction

Homotopy type theory (HoTT) extends Martin-Löf type theory (MLTT) with univalence and
higher inductive types [23]. The key feature of HoTT is that all types behave as homotopy
types of topological spaces [8]. Thus, with HoTT, we can use purely type-theoretic methods
to prove new properties of spaces. Moreover, higher inductive types (HITs) let us bring
a huge range of spaces into HoTT. As a result, HoTT is a useful system for developing
synthetic homotopy theory and formalizing it in proof assistants like Agda and Coq [7, 5].

We study HITs arising as (homotopy) colimits in coslices of a universe, called coslice
colimits. Coslices of a universe are type-theoretic versions of coslice categories. A colimit in
a category is an object formed by gluing togther simpler objects in a coherent fashion. The
coherent requirement ensures that the colimit has a universal property, which reduces proofs
about the colimit to proofs about the simpler objects it is built out of. When these objects
are spaces, perhaps endowed with extra structure, colimits built out of them find wide use
in homotopy theory. For example, the class of HITs we study includes colimits of pointed
spaces. Such colimits are key to the Brown representability theorem [12, Section 1.4.1], which
is about homotopy functors on the (∞-)category of pointed connected spaces. Indeed, the
proof relies on the fact that this category is generated under colimits by compact cogroups.

1.1 Contributions
In this section, we explain the contributions of the paper along with its organization. We
start by outlining the heart of the paper, which we call the main connection. Afterward,
we describe its three independent applications in synthetic homotopy theory. Full details

© Perry Hart and Favonia;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Colimits in Homotopy Type Theory

and proofs of our development are found in our associated technical report [6]. We have
formalized our construction of A-colimits in Agda but not the applications of it. A GitHub
repository containing our formalization will appear shortly.

1.1.1 The main connection (Section 5)
Suppose U is a universe and A is a type in U . We want to construct all colimits in A/U , or A-
colimits. HoTT has a general schema for HITs that would let us simply postulate A-colimits.
We, however, explicitly construct A-colimits with just the machinery of MLTT augmented
with pushouts (Section 5).1 We take this different apporach to reveal the connection between
A-colimits and their underlying colimits in U . In fact, our construction is not a case of a
general method to encode higher-dimensional HITs with pushouts but rather tailored to
reveal this connection.

Why do we care about this connection? It sheds light on three established areas of
synthetic homotopy theory. We preview them now and will return to them in Sections 6–8.

The universality of colimits (Section 6)

The universality of colimits is a special feature of locally cartesian closed (LCC) ∞-categories,
such as that of spaces. The main connection will establish a well-known classical result inside
type theory: The forgetful functor A/U → U creates colimits of diagrams over contractible
graphs (Theorem 15).2 Examples of such colimits include sequential colimits [21]. With the
forgetful functor creating colimits, we can transfer the universality of A-colimits in a large
number of cases (Theorem 16). This is notable because LCC categories are not closed under
coslices.

The categories of higher groups are cocomplete (Section 7)

A striking feature of colimits is their interaction with orthogonal factorization systems. In
Section 7, we use the main connection to show that colimits in A/U preserve left classes
of maps of such systems on U . It is significant that we consider systems on U rather than
A/U . We could derive a similar preservation theorem for systems on A/U directly from the
universal property of an A-colimit. In practice, however, the orthogonal factorization systems
we tend to care about are on U . Since the main connection relates the action of A-colimits
on maps to the action of their underlying colimits on maps (Section 5.4), we manage to
deduce the preservation theorem for systems on U .

To prove this theorem, we find it useful to develop the theory of orthogonal factorization
systems in a more general setting than U . In Section 4.1, we study such systems on wild
categories, which make up one approach to category theory in HoTT. We prove that if a
functor F of well-behaved wild categories with orthogonal factorization systems has a right
adjoint G, then F preserves the left class when G preserves the right class (Theorem 11). We
combine this result with the main connection to deduce the desired preservation property.

When we focus on the (n-connected, n-truncated) system on U [23, Section 7.6] and take
A as the unit type, the main connection shows that the colimit of every diagram of pointed
n-connected types is n-connected. One useful corollary of this is that the higher category

1 A theoretical advantage of such a construction is that pushouts, the simplest nontrivial HITs, can be
postulated with a less powerful schema than that required to postulate A-colimits.

2 For a definition of creating (co)limits, see [13].
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(n, k) GType of k-tuply groupal n-groupoids considered by [2] is cocomplete on (directed)
graphs for all truncation levels −2 ≤ n ≤ ∞ and −1 ≤ k < ∞ (Example 18).

Cohomology sends colimits to weak limits (Section 8)

Finally, we examine how cohomology theories interact with colimits. To do this, we consider
weak limits, which are key ingredients in the Brown representability theorem (BRT). A weak
colimit in a category need not satify the uniqueness property required of a colimit. The
BRT specifies conditions for a presheaf on the homotopy category Ho(Top∗,c) of pointed
connected spaces to be representable. The known proof of this theorem requires the presheaf
to send countable homotopy colimits in Top∗,c to weak limits in Set. Eilenberg-Steenrod
cohomology theories enjoy this property as set-valued functors, which may be viewed as the
generalized Mayer-Vietoris property of cohomology.

In Section 8, we use the main connection to establish a restricted, type-theoreitc version
of this property. From the main connection we derive another construction of A-colimits, as
pushouts of coproducts (Corollary 20), which mirrors a well-known classical lemma. We take
A as the unit type and combine the new construction with the Mayer-Vietoris sequence to
find that cohomology takes finite colimits to weak limits assuming the axiom of choice.

2 Additional related work

2.1 Construction of nonrecursive 2-HITs
The HITs we consider are nonrecursive 2-HITs, in the sense that they have only nonrecursive
constructors of points and of paths of dimension one or two. Van Doorn et al. explicitly
construct nonrecursive 2-HITs in MLTT augmented with puhsouts [24]. When specialized to
A-colimits, however, their construction has a significantly different form from ours and does
not directly lead to the properties of A-colimits we derive. Moreover, they do not prove the
full induction principle enjoyed by the 2-HIT for their construction, whereas we do for ours.
The full induction principle is necessary (and sufficient) to characterize the 2-HIT uniquely.

2.2 Orthogonal factorization systems
Our work also builds on the theory of orthogonal factorization systems. Such systems play
important roles in model category theory [15], a key framwork for classical homotopy theory.
Moreover, in type theory, Rijke et al. have shown that such systems on U are closely connected
to modalites [18], which are important in logic. We extend such systems to categories other
than U . Moreover, we lift such systems on U to categories of diagrams in U (Lemma 17).

3 Background on type theory and colimits

Before describing the main connection and its applications, we need to review the type
system we work in. For us, the most important data type of this system is the colimit of a
diagram of types over a graph, or the ordinary colimit.

3.1 Type system
We assume the reader is familiar with MLTT and HITs in the style of [23]. We will work in
MLTT augmented with ordinary colimits, nonrecursive 1-HITs defined in Section 3.3. In
fact, we need only augment MLTT with pushouts as they let us construct all nonrecursive
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1-HITs with all of their computational properties. Our system, denoted by MLTT + Colim,
gives us strong function extensionality for free. Some applications of the main connection
also use Voevodsky’s univalence axiom. We will note each time that we use univalence.

3.2 Graphs
Let U be a universe and A : U . In classical category theory, a diagram is a functor I → C of
categories. As long as C is cocomplete, we can form the functor colimI sending each diagram
over I to its colimit in C. We, however, want the colimit of a diagram in the ∞-category
A/U , known as a homtopy colimit. This requires the diagram to be homotopy coherent at
infinitely many levels. It is unknown whether one can define such diagrams in HoTT.

Still, we can define fully coherent diagrams over free categories on a graph. A graph is
a pair Γ := (Γ0,Γ1) consisting of a type Γ0 : U of vertices and a family Γ1 : Γ0 → Γ0 → U
of edges. A Γ-shaped diagram in A/U is a pair F := (F0, F1) consisting of a function
F0 : Γ0 → A/U and a family of maps F1 : (i, j : Γ0) → Γ1(i, j) → F0(i) →A F0(j). Here, we
have defined A/U :=

∑
T :U A → T and X →A Y :=

∑
k:pr1(X)→pr1(Y ) k ◦ pr2(X) ∼ pr2(Y )

where X,Y : A/U . We may write F for F0 and F1. We remark that F is implicitly coherent
because its domain is freely generated by the points and edges of Γ.

▶ Example 1. For each graph Γ and D : Ob(A/U), the constant diagram constΓ(D) at
D is defined by (constΓ(D))0 (i) := D and (constΓ(D))1 (i, j, g) := idD. We often refer to
constΓ(D) simply by D.

We will see that A-colimits interact nicely with trees. A tree is a graph without cycles.
Formally, a graph Γ is a tree if the quotient Γ0/Γ1 is contractible. Both N and Z are trees
when equipped with the successor ordering:

N ≡ 0 1 2 · · · Z ≡ · · · −1 0 1 · · ·

Rijke has defined the notion of directed tree and has defined an interpretation function
sending an element of a W-type to a directed tree [19, “The underlying trees of elements of
W-types”]. Every directed tree is a tree in our sense (see [6, Lemma 2.0.8]). Thus, every
element of a W-type can be realized as a tree.

3.3 Colimits in U
Let F be a Γ-shaped diagram in U . The colimit of F is the HIT colimΓ(F ) generated by

Fi Fj

ι : (i : Γ0) → Fi → colimΓ(F )
κ : (i, j : Γ0) (g : Γ1(i, j)) → ιj ◦ Fi,j,g ∼ ιi

colimΓ(F )

Fi,j,g

ιi ιj

κi,j,g

What characterizes colimΓ(F ) as a colimit of F is that κ is (homotopy) initial in the category
of cocones under F (or F -cocones) [20]. Equivalently, for every X : U , the function

postcomp : (colimΓ(F ) → X) → CoconeF (X)
postcomp(f) :=

(
λi.f ◦ ιi, λiλjλgλ(x : Fi).apf (κi,j,g(x))

)
is an equivalence, where CoconeF (X) denotes the type of F -cocones on X.
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4 Wild categories

The coslice of a universe fits into the framework of wild categories. This is one approach to
category theory in HoTT and is used by other works of synthetic homotopy theory [10, 3, 5].
It provides us an interface for key definitions and lemmas throughout the paper. It is
especially useful for the relationship between A-colimits and orthogonal facotrization systems
we establish in Section 7. This relationship requires us to formulate orthogonal factorization
systems on categories other than universes, namely the category of type-valued diagrams
over a graph.

The key distinction between wild categories and (pre-)categories [23, Section 9.1] is
that the latter have 0-truncated hom types. This means that instead of cutting away the
higher coherence data for morphisms, wild categories simply ignore them. We choose them
over pre-categories because we will focus on type-theoretic universes and their coslices (see
Example 6), which are wild categories but not pre-categories in general.

▶ Definition 2 ([6, Definition 3.1.1]). A wild category (in a universe U) is a tuple C consisting
of a type Ob : U of objects, a family homC : Ob → Ob → U of hom types, idenity morphisms
id, composition ◦, left LId and right RId unit laws, and associativity laws assoc.

By itself, the data of a wild category is insufficient for our work on orthogonal factorization
systems. We need two extra ingredients. The first is the data of a bicategory, which is defined
as in classical 2-category theory. The second is a wild-categorical version of univalence.

▶ Definition 3. A wild category C is a bicategory if it is equipped with identities
(a) ap−◦f (assoc(k, g, h)) · assoc(k, g ◦ h, f) · apk◦−(assoc(g, h, k)) =

assoc(k ◦ g, h, f) · assoc(k, g, h ◦ f) for all composable morphisms k, g, h, and f
(b) assoc(g, id, h) · apg◦−(LId(h)) = ap−◦h(RId(g)) for all composable morphisms g and h.3

▶ Remark. For us, a bicategory is always a (2, 1)-category since the 2-cells, which are identities
in U , are invertible.

Before moving to univalence, we transfer a well-known lemma of classical 2-category
theory to type theory. This was first proved for monoidal categories [9], but the proof is
applicable to all bicategories. (The type-theoretic version also appears as [3, Lemma 4.3].)

▶ Lemma 4 ([6, Lemma 3.1.6]). Let C be a bicategory. For all A,B,C : Ob(C), f : homC(A,B),
g : homC(B,C), we have LId(g ◦ f)−1 · assoc(id, g, f)−1 · ap−◦f (LId(g)) = reflg◦f .

▶ Definition 5. Let C be a bicategory. We say that C is univalent if the canonical function(
A =Ob(C) B

)
→ (A ≃C B) is an equivalence. Here, elements of the righthand type are

equivalences, defined as bi-invertible morphisms (in the manner of [23, Definition 4.3.1]).

▶ Example 6. The following are univalent bicategories assuming the univalence axiom.
The category U of types and functions
For each A : U , the coslice A/U of U under A
The category Diag(Γ, A/U) of Γ-shaped diagrams in A/U . We define its hom types (natural
transformations) when we present the action of the A-colimit on maps (Section 5.4).

Our ultimate interest is in colimits in the wild category A/U . This category is defined by

Ob(A/U) :=
∑
X:U

A → X homA/U (X,Y ) := X →A Y

3 A wild bicategory is called a wild 2-precategory by [3].
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For each X : Ob(A/U), the identity morphism on X is
(
idpr1(X), λa.reflpr2(X)(a)

)
. Composition

is defined by (g, gp) ◦ (f, fp) :=
(
g ◦ f, λa. apg(fp(a)) · gp(a)

)
. The associativity and unit laws

follow from routine path algebra. Note the categories 0/U and U are equivalent.
We write ty and str for the functions pr1 : Ob(A/U) → U and pr2 : (Z : Ob(A/U)) →

A → pr1(Z), respectively. Also, we write fun and pt for the functions pr1 : homA/U (W,Z) →
ty(W ) → ty(Z) and pr2 :

(
h : homA/U (W,Z)

)
→ pr1(h) ◦ str(W ) ∼ str(Z), respectively.

▶ Lemma 7. Let f, g : X →A Y and H : fun(f) ∼ fun(g). Let f ∼A g := (a : A) →
H(str(X)(a))−1 · pt(f)(a) = pt(g)(a). We have an equivalence ⟨H,−⟩ : f ∼A g → f = g.

4.1 Orthogonal factorization systems

We now introduce orthogonal factorization systems on wild categories. For us, the key
property of such systems is that they interact nicely with adjunctions. In Section 7, we
deduce from this property, combined with the main connection, that A-colimits preserve the
left classes of orthogonal factorization systems on U .

▶ Definition 8. Let C be a wild category. An orthogonal factorization system (OFS) on C
consists of predicates L,R :

∏
A,B:C homC(A,B) → Prop such that

1. both L and R are closed under composition and have all identities;
2. for every h : homC(A,B), the following type is contractible:

factL,R(h) :=
∑
D:C

∑
f :homC(A,D)

∑
g:homC(D,B)

g ◦ f = h× L(f) × R(g).

For the next lemma, where C is a univalent bicategory, C is similar enough to U that the
proof for U can be transfered to C.4 Indeed, univalence lets us characterize the identity types
of factL,R(h) via the fundamental theorem of identity types [17, Theorem 11.2.2]. Moreover,
Lemma 4 gives us a suitable diagonal filler for the key commuting square used by the proof.

▶ Lemma 9 ([6, Corollary 3.2.6]). Suppose that C is a univalent bicategory with an OFS
(L,R). A map is in L if and only if it has the left lifitng property against R.5

This alternative definition of L is useful for the proof of Theorem 11, below. For this
theorem, we need to introduce adjoint pairs of functors between wild categories.

▶ Definition 10. Let L : C → D and R : D → C be functors of wild categories. An adunction
L ⊣ R consists of an equivalence α : homD(LA,X) ≃ homC(A,RX) for all A : Ob(C) and
X : Ob(D) along with naturality proofs:

n1 : (A : Ob(C)) (X,Y : Ob(D)) (g : homD(X,Y )) (h : homD(LA,X)) → R(g) ◦ α(h) = α(g ◦ h)
n2 : (Y : Ob(D)) (A,B : Ob(C)) (f : homC(A,B)) (h : homD(LB, Y )) → α(h) ◦ f = α(h ◦ L(f)).

▶ Theorem 11 ([6, Corollary 3.2.9]). Consider an adjunction L ⊣ R where both C and D are
univalent bicategories. If R preserves R, then L preserves L.

4 For the proof of this lemma for U , see [18, Lemma 1.46].
5 The left lifting property is defined in [6, Definition 3.2.3].
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5 The main connection

Let Γ be a graph and suppose F is a diagram in A/U over Γ. We want to construct the A-
colimit of F in MLTT + Colim so as to show the connection between A-colimits and ordinary
colimits. After defining an A-colimit of F , we mention a reasonable yet wrong approach to
constructing it. Then, we explain another construction and prove it is correct by exhibiting
it as left adjoint to the constant diagram functor

5.1 Definition of A-colimits
We can generalize ordinary colimits in Section 3 to all coslices A/U . For each Y : Ob(A/U),
an F -cocone on Y consists of a family of maps h : (i : Γ0) → Fi →A Y in A/U together with
an identity Hi,j,g : hj ◦ Fi,j,g = hi for all i, j : Γ0 and g : Γ1(i, j). In this situation, we say
that Y is a colimit of F if (h,H) is iniital in the category of F -cocones. This means that for
each X : Ob(A/U), the function

postcomp(h,H) : (Y →A X) → CoconeF (X)
postcomp(h,H, f) :=

(
λi.f ◦ hi, λiλjλg.assoc(f, hj , Fi,j,g) · apf◦−(Hi,j,g)

)
is an equivalence. We must include the associativy term since associativity of maps does not
hold judgmentally in A/U (whereas it does in U).

Observe that by a variant of Lemma 7, hj ◦ Fi,j,g = hi is equivalent to the type of
homotopies ηi,j,g : fun(hj) ◦ fun(Fi,j,g) ∼ fun(hi) equipped with a path

η(str(Fi)(a)) = apfun(hj)◦fun(Fi,j,g)(pt(Fi,j,g)(a)) · pt(hj)(a) · pt(hi)(a)−1 (2-c)

for each a : A. It is this family of 2-cells which distinguishes the colimit of F , in A/U ,
from colimΓ(F(F )). Here, we reuse F to denote the evident forgetful functor from Γ-shaped
diagrams in A/U to those in U . The 2-cells affect colimΓ(F(F )) by collapsing its nontrivial
loops formed by paths of the form η(str(Fi)(a)). We call such loops distinguished loops
in colimΓ(F(F )). For example, if i ≡ j and Fi,j,g ≡ idFi , then (2-c) is equivalent to
η(str(Fi)(a)) = reflfun(hi)(str(Fi)(a)). In this case, a 2-cell fills η(str(Fi)(a)).

5.2 Misleading approach
If our setting behaved like the classical one, the colimit of F in A/U would arise as the
ordinary colimit of F(F ) augmented with the canonical arrow from A to F(Fi) for each
i : Γ0 [14, Proposition 4.6]. If Γ is discrete, i.e., Γ1 is the empty relation, then the A-colimit
of F inside HoTT is, in fact, the colimit of

A

F(Fi) · · · F(Fj)

In general, though, this construction is wrong inside HoTT. For example, the pointed colimit
of the diagram 1 id−→ 1 is trivial, but the colimit of the augmented diagram

1

1 1

id

id

id

CVIT 2016
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is the circle S1. The reason for the discrepancy between the classical case and ours is that
unless Γ is discrete, the augmented diagram inside HoTT adds arrows that are intended as
composites but are not interpreted as such in the model of HoTT. Indeed, the model sees
them as freely added to the diagram.

5.3 Our approach
Our approach to building the colimit of F never creates an augmented diagram, thereby
avoiding the problem of Section 5.2. We start with the colimit colimΓ(F(F )) which ignores
the coslice structure of F . Then, we glue onto this colimit the 2-cells required by the coslice
colimit. We do this via a quotient of colimΓ(F(F )) that fills its distinguished loops.

To this end, define colimΓ A
ψ−→ colimΓ(F(F )) by colimit induction, as the function

induced by the cocone

A A

colimΓ(F(F ))

idA

ιi◦str(Fi) ιj◦str(Fj)
(a 7→ apιj (pt(Fi,j,g)(a))−1 · κi,j,g(str(Fi)(a)))

under the constant diagram at A. Intutively, this map finds the distinguished loops of
colimΓ(F(F )). Next, form the pushout square

colimΓ A colimΓ(F(F ))

A PF

⟨idA⟩i:Γ0

ψ

inr

inl

⌟

With the equivalence ⟨−,−⟩ of Lemma 7, we can form an F -cocone on (PF , inl)

Fi Fj

PF

(inr◦ιi,τi) (inr◦ιj ,τj)

Fi,j,g

⟨δi,j,g,ϵi,j,g⟩ (τi(a) := gluePF
(ιi(a))−1)

as follows. We have a homotopy δi,j,g := λ(x : ty(Fi)). apinr(κi,j,g(x)) from inr ◦ ιj ◦ fun(Fi,j,g)
to inr ◦ ιi. Further, for each a : A, we have a chain ϵi,j,g(a) of identities

apinr(κi,j,g(str(Fi)(a)))−1 · apinr◦ιj (pt(Fi,j,g)(a)) · τj(a)

= apinr(apιj (pt(Fi,j,g)(a))−1 · κi,j,g(str(Fi)(a)))−1 · τj(a) · reflinl(a)

= apinr(apψ(κi,j,g(a)))−1 · τj(a) · reflinl(a) (via ρψ(i, j, g, a))
= apinr(apψ(κi,j,g(a)))−1 · τj(a) · apinl(ap⟨idA⟩(κi,j,g(a))) (via ρ⟨idA⟩(i, j, g, a))

= (κi,j,g(a))∗ (τj(a)) (transport on identity type)
= τi(a) (by apdglue(−)−1(κi,j,g(a)))

Let K(PF ) denote this F -cocone structure on (PF , inl).
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▶ Theorem 12 ([6, Theorem 4.4.3]). The function

postcomp(K(PF ), T, fT ) : ((PF , inl) →A (T, fT )) → CoconeF (T, fT )

is an equivalence for every (T, fT ) : Ob(A/U).

Proof. We construct a quasi-inverse Cocone(T, fT ) Θ−→ ((PF , inl) →A (T, fT )) of postcomp
as follows. Let (r,K) : Cocone(T, fT ). The forgetful functor F from cocones under F to
ordinary cocones under F(F ) gives rise to the function elimF(r,K) : colimΓ(F(F )) → T by
the colimit elimination principle. For all i : Γ0 and a : A, we have

fT (a) fun(ri)(str(Fi(a))) elimF(r,K)(str(Fi(a)))pt(ri)(a)−1

Further, for all i, j : Γ0, g : Γ1(i, j), and a : A, we have a chain of identities

transpx 7→fT ([idA](x))=reccolim(UF (r,K))(ψ(x))(κi,j,g(a), pr2(rj)(a)−1)
= apfT

(ap[idA](κi,j,g(a)))−1 · pr2(rj)(a)−1 · apreccolim(UF (r,K))(apψ(κi,j,g(a)))
(transport on identity type)

= apfT
(ap[idA](κi,j,g(a)))−1 · pr2(rj)(a)−1 · appr1(rj)(pt(Fi,j,g)(a))−1 · pr1(Kj,i,g)(str(Fi)(a))

(via ρψ(i, j, g, a) and then ρelimF(r,K)(i, j, g, str(Fi)(a)))

=
(

pr1(Kj,i,g)(str(Fi)(a))−1 · appr1(rj)(pt(Fi,j,g)(a)) · pr2(rj)(a)
)−1

(via ρ[idA](i, j, g, a))

= pr2(ri)(a)−1 (by ap−−1(pr2(Kj,i,g)(a)))

By induction on colimΓ A, this gives us a homotopy fT ◦ ⟨idA⟩ ∼ elimF(r,K) ◦ψ and thus a
function hr,K : PF → T

colimΓ A colimΓ(F(F ))

A PF

T

hr,K

fT

elimF(r,K)

defined by pushout induction on PF . Finally, since h(inl(a)) ≡ fT (a) for all a : A, we have

Θ(r,K) :=
(
hr,K , λa.reflfT (a)

)
: (PF , inl) →A (T.fT ) .

Proving that postcomp(K(PF ), T, fT ) ◦ Θ ∼ id and Θ ◦ postcomp(K(PF ), T, fT ) ∼ id involves
elaborate computations. We have formalized the proofs of both homotopies. ◀

5.4 Action on maps
So far, we have defined a function colimA

Γ := P : Ob(Diag(Γ, A/U)) → Ob(A/U) sending a
Γ-shaped diagram in A/U to its A-colimit. We now make P a functor by describing its action
on maps of diagrams. We want to describe this action in terms of the action of the ordinary
colimit functor by using the special form of P’s object function.

Suppose that F and G are Γ-shaped diagrams in A/U . The type of natural transformations
from F to G consists of families α : (i : Γ0) → ty(Fi) →A ty(Gi) of maps equipped with an
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A-homotopy Gi,j,g ◦ αi ∼A αj ◦ Fi,j,g for all i, j, g, where ∼A is as in Lemma 7. Consider a
morphism δ :=

(
d,

〈
ξ, ξ̃

〉)
Fi Fj

Gi Gj

Fi,j,g

djdi

Gi,j,g

⟨ξi,j,g,ξ̃i,j,g⟩

from F to G, where ⟨−,−⟩ is as in Lemma 7. We have a commuting square

Fi Gi

colimA
Γ (F ) colimA

Γ (G)
colimA

Γ (δ)

di

ιGiιFi ,

obtained as follows. We have colimΓ(F(F )) δ̄−→ colimΓ(F(G)) induced by the map

ty(Fi) ty(Fj)

ty(Gi) ty(Gj)

fun(di)

fun(Fi,j,g)

fun(dj)

fun(Gi,j,g)

ξi,j,g

of diagrams in U over Γ. Note that for each a : A,

ξ̃i,j,g(a) : ξi,j,g(str(Fi)(a))−1·apfun(Gi,j,g)(pt(di)(a))·str(Gi,j,g)(a) = apfun(dj)(pt(Fi,j,g)(a))·pt(dj)(a).

We may assume that ξ̃i,j,g(a) instead has the equivalent type

ξi,j,g(str(Fi)(a)) = apfun(Gi,j,g)(pt(di)(a)) · str(Gi,j,g)(a) · pt(dj)(a)−1 · apfun(dj)(pt(Fi,j,g)(a))−1︸ ︷︷ ︸
Ei,j,g(a)

.

Here we abbreviate the right endpoint by Ei,j,g(a). Now, the triangle

colimΓ A

colimΓ(F(F )) colimΓ(F(G))

ψF ψG

δ̄

(ψ-tri)

commutes by induction on colimΓ A. Indeed, the computation rules of these functions give us

Ci(a) := apιi(pt(di)(a)) : δ̄(ψF (ιi(a))) = ψG(ιi(a))
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for all i : Γ0 and a : A. Further, with Λi,j,g(a) := Cj(a) · apψG
(κi,j,g(a)), we have a chain

(κi,j,g(a))∗ (Cj(a))
= apδ̄(apψF

(κi,j,g(a)))−1 · Cj(a) · apψG
(κi,j,g(a)) (transport on identity type)

=
(

apιj (ξi,j,g(str(Fi)(a)))−1 · κi,j,g(fun(di)(str(Fi)(a)))
)−1

· apιj◦fun(dj)(pt(Fi,j,g)(a)) · Λi,j,g(a)
(via ρψF

(i, j, g, a) and then ρδ̄(i, j, g, str(Fi)(a)))

=
(

apιj (Ei,j,g(str(Fi)(a)))−1 · κi,j,g(fun(di)(str(Fi)(a)))
)−1

· apιj◦fun(dj)(pt(Fi,j,g)(a)) · Λi,j,g(a)
(by ap(

apιj
(−)−1·κi,j,g(fun(di)(str(Fi)(a)))

)−1
····

(ξ̃i,j,g(a)))

= Ci(a) (via ρψG
(i, j, g, a))

of identities for all i, j : Γ0, g : Γ1(i, j), and a : A, so (ψ-tri) commutes. We now have a map

A colimΓ A colimΓ(F(F ))

A colimΓ A colimΓ(F(G))

id id δ̄refl[id](x) C−1

of spans, which induces a function Ψδ : PF → PG by the universal property of pushouts. Since
Ψδ(inl(a)) ≡ inl(a) for all a : A, we may take colimA

Γ (δ) as
(
Ψδ, λa.reflinl(a)

)
: PF →A PG.

To verify that the functor Diag(Γ, A/U) colimA
Γ−−−−→ A/U we’ve defined is correct, we must

show that it is left adjoint to the constant diagram functor, i.e., the universal property of the
colimit functor. Specifcally, we must construct the terms n1 and n2 required by Definition 10.

▶ Lemma 13 ([6, Lemma 4.4.5]). For every map h∗ : T →A U , the following square commutes:

colimA
Γ (F ) →A T colimA

Γ (F ) →A U

CoconeF (T ) CoconeF (U)

h∗◦−

postcompF,T postcompF,U

CoconeF (h∗◦−)

▶ Lemma 14 ([6, Lemma 4.4.12]). For every T : Ob(A/U) and δ : F ⇒A G, the following
square commutes:

colimA
Γ (G) →A T colimA

Γ (F ) →A T

CoconeG(T ) CoconeF (T )

postcompG,T

Cocone(T )(−◦δ)

−◦colimA
Γ (δ)

postcompF,T

The two lower horizontal functions are induced by post-composition with f∗ and pre-
composition with δ [6, Definition 4.4.11], respectively.

Lemma 13 is a routine path algebra computation, whereas Lemma 14 takes a lot of work.
The proof of Lemma 14 is easier for postcomp−1

F,colimA
Γ (G)(K(δ)) than for colimA

Γ (δ), where
K(δ) is the canonical cocone on PG under F induced by δ. Therefore, we decide to reduce
the goal to an A-homotopy between the two maps. This is easier than our original goal but
requires elaborate computations. We have formalized both Lemma 13 and Lemma 14.
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6 Creation of colimits

Classically, if D is an ∞-category, then the forgetful functors of ∞-coslices create D-shaped
colimits when D’s core is contractible. Theorem 15 expresses the same result inside HoTT.

▶ Theorem 15. The forgetful functor A/U → U creates colimits over trees.

Proof. Intuitively, a tree has no cycles, and thus we have no distinguished loops to fill. As
a result, coslice colimits over trees look the same as their underlying colimits in U . See [6,
Corollary 4.4.6] for a rigorous proof. ◀

▶ Remark. The fact that the forgetful functor U∗ → U from pointed types creates pushouts
appears in the agda-unimath library, though without proof [19, “Pushouts of pointed types”].

Theorem 15 lets us lift powerful features of ordinary colimits to A-colimits. For example,
the distinguishing feature of a LCC ∞-category, such as U , is that all of its colimits are
universal, i.e., pullback-stable. Although the coslice of a LCC category need not be LCC, we
now show that all of its colimits over trees are universal.

▶ Theorem 16. For each tree Γ, the colimit colimA
Γ (−) is universal.

Proof. By [16, Corollary 3.5.1], the ordinary colimit is pullback-stable. Thus, if Γ is a tree,
then Theorem 15 implies that colimA

Γ (−) is pullback-stable as well. ◀

7 Preservation of left class of an OFS

In this section, we combine our construction of colimA
Γ (δ) from Section 5.4 with Theorem 11 to

prove that colimA
Γ always preserves the left class of an OFS on U . We assume the univalence

axiom to have access to the the tools of univalent bicategories developed in Section 4.
Let (L,R) be an OFS on U . For all diagrams F,G : DΓ := Diag(Γ,U) and natural

transformations (H, γ) : F ⇒ G, define the predicates L̂(H, γ) := (i : Γ0) → L(Hi) and
R̂(H, γ) := (i : Γ0) → R(Hi).

▶ Lemma 17 ([6, Theorem 6.0.7]). Let Q : F ⇒ G. The following type is contractible:

factL̂,R̂(Q) :=
∑
M :DΓ

∑
S:F⇒M

∑
T :M⇒G

(T ◦ S = Q) × L̂(S) × R̂(T ).

By Lemma 17, we see that (L,R) on U lifts levelwise to DΓ. Since the functor constΓ : U → DΓ
clearly takes R to R̂, we deduce that colimΓ(−) takes L̂ to L by Theorem 11.6 Now, for each
X,Y : Ob(A/U), consider the predicate LA(f, p) := L(f) on X →A Y . Then the functor
colimA

Γ takes L̂A to LA. Indeed, consider a map δ : A ⇒A B of A-diagrams. The underlying
function of colimA

Γ (δ) is induced by the morphism

A colimΓ A colimΓ(F(A))

A colimΓ A colimΓ(F(B))

id id δ̄

of spans. Thus, if δ is in L̂A, then all three vertical functions are in L. Since a map of spans
is a map of diagrams, we see that colimA

Γ (δ) is in LA.

6 The adjunction colimΓ ⊣ constΓ follows directly from the equivalence postcomp of Section 3.3.
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In particular, if F is a diagram of pointed types over Γ such that each ty(Fi) is (L,R)-
connected, then the type colim∗

Γ(F ) := colim1
Γ(F ) is also (L,R)-connected.7 Indeed, we can

deduce that colim∗
Γ 1 = 1 from the construction of PF . Thus, colim∗

Γ takes the unique map
F ⇒∗ 1 of pointed diagrams to (c, cp) : colim∗

Γ(F ) →∗ colim∗
Γ 1 where c : colim∗

Γ(F ) → 1 is
the constant map and L(c) holds.

▶ Example 18 ([6, Section 6.1]). For each truncation level n, if each ty(Fi) is n-connected,
then so is the underlying type of colim∗

Γ(F ). Now, let −1 ≤ k < ∞ also be a truncation level.
Recall from [2] the category (n, k) GType of k-tuply groupal n-groupoids. This is equivalent to
the full subcategory U∗

≥k,≤n+k of U∗ on (k − 1)-connected, (n+ k)-truncated pointed types.
As the truncation functor ∥−∥m : A/U → A/U creates colimits for each m [6, Corollary
4.2.5], our preceding argument implies that U∗

≥k,≤n+k has all colimits over graphs.
It is a special feature of pointed colimits that they always preserve n-connectedness.

Indeed, if Γ is not a tree, then colimΓ may fail to preserve n-connectedness (see [6, Example
6.0.9(b)]).

8 Mapping colimits to weak limits

Finally, we look at the interaction between colimits and (Eilenberg-Steenrod) cohomology
theories. Specifically, we apply the 3 × 3 lemma to the main connection to obtain the familiar
construction of colimA

Γ (F ) as a pushout of coproducts in A/U . Afterward, we apply this new
construction to the Mayer-Vietoris sequence to prove that cohomology theories send finite
colimits to weak limits in Set assuming the axiom of choice.

8.1 Decomposition of A-colimits into simpler pieces
To make use of the 3 × 3 lemma, we first form the following grid of commuting squares:

∑
i,j,g ty(Fi)

(∑
i,j,g ty(Fi)

)
+

(∑
i,j,g ty(Fi)

) ∑
i ty(Fi)

(∑
i,j Γ1(i, j)

)
×A

((∑
i,j Γ1(i, j)

)
×A

)
+

((∑
i,j Γ1(i, j)

)
×A

)
Γ0 ×A

A A A

id + id (i,x) + (j,fun(Fi,j,g)(x))

(i,j,g,str(Fi)(a))

pr2

(i,j,g,str(Fi)(a)) + (i,j,g,str(Fi)(a))

id + id (i,a) + (j,a)

pr2 + pr2

(i,str(Fi)(a))

pr2

idA idA

Call the pushouts of the left, middle, and right vertical spans V1, V2, and V3, respectively. Call
the pushouts of the top, middle, and bottom horizontal spans H1, H2, and H3, respectively.
We can form two additional pushouts from this grid:

V2 V3 H2 H1

V1 PV H3 PH

δ2

δ1 inr

η1

η2 inr

inl

⌟

inl

⌟

δ1 denotes the function induced by the middle-to-left map of spans;

7 A type X is (L, R)-connected if the function X → 1 is in L.
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δ2 denotes the function induced by the middle-to-right map of spans;
η1 denotes the function induced by the middle-to-top map of spans; and
η2 denotes the function induced by the middle-to-bottom map of spans.

The 3 × 3 lemma now gives us an equivalence τ1 : PH
≃−→ PV of types defined by double

induction on pushouts [11, Section VII].

▶ Note. Let ∆ be a discrete graph and G an A-diagram over ∆. The pushout

∆0 ×A
∑
i:∆0

ty(Gi)

A D

(i,a)7→(i,str(Gi)(a))

pr2 inr

inl

⌟

together with inl is the coproduct of the Gi in A/U . We denote D by
∨
i:∆0

ty(Gi).

▶ Lemma 19. We have two equivalences of spans:

A colimΓ A colimΓ(F(F ))

H3 H2 H1

V1 V2 V3

∨
i,j,g ty(Fi)

(∨
i,j,g ty(Fi)

)
∨

(∨
i,j,g ty(Fi)

) ∨
i ty(Fi)

≃

[idA] ψ

≃ ≃

η2 η1

δ1 δ2

≃

id ∨ id ν

where ν is defined by double induction on pushouts through the commuting square

A
∨
i,j,g pr1(Fi)

∨
i,j,g pr1(Fi)

∨
i pr1(Fi)(i,j,g,x)7→inr(i,x)

(i,j,g,x)7→inr(j,fun(Fi,j,g)(x))reflinl(a) .

Notice that the pushout of the topmost span appearing in Lemma 19 is exactly PF . By the
3 × 3 lemma, this gives us colimA

Γ (F ) as a familiar pushout of coproducts.

▶ Corollary 20 ([6, Corollary 4.5.3]). We have a pushout square(∨
i,j,g ty(Fi)

)
∨

(∨
i,j,g ty(Fi)

) ∨
i ty(Fi)

∨
i,j,g ty(Fi) colimA

Γ (F )

ν

id ∨ id ⌟

8.2 Generalized Mayer-Vietoris property
With this new construction of colimA

Γ , we can transfer the generalized Mayer-Vietoris property
of cohomology to HoTT. This application is described in detail in [6, Section 7]. To use the
Mayer-Vietoris sequence, we assume the univalence axiom.
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Suppose that H∗ : (U∗)op → Ab is a cohomology theory.8 Consider a pushout

Z Y

X P

g

f inr

inl

⌟

of a span of pointed maps. In [4], Cavallo constructs the Mayer-Vietoris sequence for P , a
long exact sequence (LES) of the form

· · · Hn−1(P ) Hn−1(X) ×Hn−1(Y ) Hn−1(Z)

Hn(P ) Hn(X) ×Hn(Y ) Hn(Z) · · ·
(Hn(inl),Hn(inr)) Hn(f)−Hn(g)

Let F be a diagram of pointed types over a finite graph.9 As cohomology preserves finite
wedges [4, Section 4.2], Corollary 20 combined with this LES gives us an exact squence

Hn(colim∗
Γ(F ))

∏
i,j,gH

n(Fi) ×
∏
iH

n(Fi)
∏
i,j,gH

n(Fi) ×
∏
i,j,gH

n(Fi)
ζn µn−νn

(ext)

for each n : Z. Here, ζn is defined as the composite

Hn(colim∗
Γ(F ))

∏
i,j,gH

n(Fi) ×
∏
iH

n(Fi)

Hn(
∨
i,j,g Fi) ×Hn(

∨
i Fi)

ζn

∼=×∼=

and µn and νn are defined by (f, h) 7→ (f, λiλjλg.Hn(Fi,j,g)(hj)) and (f, h) 7→ (f, λiλjλg.hi),
respectively. Moreover, the universal property of limits in Ab gives us a commuting triangle

Hn(colim∗
Γ(F )) limΓ H

n(F )

Hn(Fi)

∆F

Hn(ιi) pri

for each i : Γ0, induced by the cone (Hn(colim∗
Γ(F )), Hn(ι)) over Hn(F ). One can check

that the exactness of (ext) implies that ∆F is epic as a map of sets.
At this stage, if we were in a classical system, then it would follow that ∆F has a section,

which in turn would imply that Hn(colim∗
Γ(F )) is a weak limit. Inside HoTT, we may assume

the axiom of choice [23, Section 3.8] to conclude that ∆F is merely a weak limit. In this
sense, H∗ has the finite generalized Mayer-Vietoris property inside HoTT.

8 See [1, Section 6] for a description of Eilenberg-Steenrod cohomology theory inside HoTT. A slightly
more general definition is found in [6, Section 7].

9 This means that Γ0 is finite and Γ1(i, j) is finite for all vertices i and j. When H∗ is a singular
cohomology theory, we may extend the class of graphs to those satisfying the set-level axiom of choice,
in the sense of [1, Definition 6.1].
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9 Conclusion and future work

We explored colimits inside HoTT. The heart of our work was the connection between
A-colimits and ordinary colimits, i.e., the main connection. To derive the main connection,
we found an explicit construction of A-colimits that was tailored to reveal the connection. We
used the main connection to prove that the forgetful functor from a coslice creates colimits
over trees and that A-colimits over trees are universal. We also used the main connection to
examine how colimits interact with orthogonal factorization systems. As a result, we found
that all pointed colimits preserve n-connectedness, which implies that higher groups are
closed under colimits on directed graphs. Finally, we used the main connection to see that
cohomology takes finite colimits to weak limits in Set assuming the axiom of choice.

Our future work includes additional Agda formalization. In addition, a natural direction is
to extend our development to colimits of diagrams over 2-computads [22]. To our knowledge,
colimits of type-valued diagrams over higer-dimensional graphs have not been developed in
the untruncated setting. We believe both Section 6 and Section 7 can be generalized to the
setting of 2-computads.



P. Hart and Favonia 23:17

References
1 Ulrik Buchholtz and Kuen-Bang Hou (Favonia). Cellular Cohomology in Homotopy Type

Theory. Logical Methods in Computer Science, Volume 16, Issue 2, 2020. doi:10.23638/LMC
S-16(2:7)2020.

2 Ulrik Buchholtz, Floris van Doorn, and Egbert Rijke. Higher groups in homotopy type theory.
In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’18, page 205–214, New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3209108.3209150.

3 Paolo Capriotti and Nicolai Kraus. Univalent higher categories via complete Semi-Segal types.
Proc. ACM Program. Lang., 2(POPL), 2017. doi:10.1145/3158132.

4 Evan Cavallo. Synthetic cohomology in homotopy type theory, 2015. URL: https://staff.
math.su.se/evan.cavallo/works/thesis15.pdf.

5 J Daniel Christensen and Luis Scoccola. The Hurewicz theorem in homotopy type theory.
Algebraic and Geometric Topology, 23(5):2107–2140, 2023. doi:10.2140/agt.2023.23.2107.

6 Perry Hart and Kuen-Bang Hou (Favonia). Technical report for “colimits in homotopy type
theory”, 2024. URL: https://phart3.github.io/colimits-paper-TR.pdf.

7 Kuen-Bang Hou (Favonia), Eric Finster, Daniel R. Licata, and Peter LeFanu Lumsdaine.
A Mechanization of the Blakers-Massey Connectivity Theorem in Homotopy Type Theory.
In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’16, page 565–574, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2933575.2934545.

8 Krzysztof Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of Univalent Founda-
tions (after Voevodsky). J. Eur. Math. Soc., 23(6):2071–2126, 2021. doi:10.4171/JEMS/1050.

9 Max Kelly. On maclane’s conditions for coherence of natural associativities, commutativities,
etc. Journal of Algebra, 1(4):397–402, 1964. doi:10.1016/0021-8693(64)90018-3.

10 Nicolai Kraus and Jakob von Raumer. Path spaces of higher inductive types in homotopy
type theory. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer
Science, 2021.

11 Daniel R. Licata and Guillaume Brunerie. A cubical approach to synthetic homotopy theory.
In 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science. IEEE, 2015.
doi:10.1109/LICS.2015.19.

12 Jacob Lurie. Higher algebra. Unpublished. Available online at https://www.math.ias.edu
/~lurie/, 2017.

13 nLab authors. created limit. https://ncatlab.org/nlab/show/created+limit, 2024.
Revision 21.

14 nLab authors. (infinity,1)-limit. https://ncatlab.org/nlab/show/%28%E2%88%9E%2C1%29-l
imit, 2024. Revision 78.

15 Emily Riehl. Categorical Homotopy Theory. New Mathematical Monographs. Cambridge
University Press, 2014. doi:10.1017/CBO9781107261457.

16 Egbert Rijke. Classifying types, 2019. URL: https://arxiv.org/abs/1906.09435.
17 Egbert Rijke. Introduction to homotopy type theory, 2022. URL: https://arxiv.org/abs/

2212.11082, arXiv:2212.11082.
18 Egbert Rijke, Michael Shulman, and Bas Spitters. Modalities in homotopy type theory. Logical

Methods in Computer Science, Volume 16, Issue 1, 2020.
19 Egbert Rijke, Elisabeth Stenholm, Jonathan Prieto-Cubides, Fredrik Bakke, and others. The

agda-unimath library. URL: https://github.com/UniMath/agda-unimath/.
20 Kristina Sojakova. Higher inductive types as homotopy-initial algebras. SIGPLAN Not.,

50(1):31–42, 2015. doi:10.1145/2775051.2676983.
21 Kristina Sojakova, Floris van Doorn, and Egbert Rijke. Sequential colimits in homotopy type

theory. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’20, page 845–858, 2020. doi:10.1145/3373718.3394801.

CVIT 2016

https://doi.org/10.23638/LMCS-16(2:7)2020
https://doi.org/10.23638/LMCS-16(2:7)2020
https://doi.org/10.1145/3209108.3209150
https://doi.org/10.1145/3158132
https://staff.math.su.se/evan.cavallo/works/thesis15.pdf
https://staff.math.su.se/evan.cavallo/works/thesis15.pdf
https://doi.org/10.2140/agt.2023.23.2107
https://phart3.github.io/colimits-paper-TR.pdf
https://doi.org/10.1145/2933575.2934545
https://doi.org/10.4171/JEMS/1050
https://doi.org/10.1016/0021-8693(64)90018-3
https://doi.org/10.1109/LICS.2015.19
https://www.math.ias.edu/~lurie/
https://www.math.ias.edu/~lurie/
https://ncatlab.org/nlab/show/created+limit
https://ncatlab.org/nlab/revision/created+limit/21
https://ncatlab.org/nlab/show/%28%E2%88%9E%2C1%29-limit
https://ncatlab.org/nlab/show/%28%E2%88%9E%2C1%29-limit
https://ncatlab.org/nlab/revision/%28%E2%88%9E%2C1%29-limit/78
https://doi.org/10.1017/CBO9781107261457
https://arxiv.org/abs/1906.09435
https://arxiv.org/abs/2212.11082
https://arxiv.org/abs/2212.11082
https://arxiv.org/abs/2212.11082
https://github.com/UniMath/agda-unimath/
https://doi.org/10.1145/2775051.2676983
https://doi.org/10.1145/3373718.3394801


23:18 Colimits in Homotopy Type Theory

22 Ross Street. Limits indexed by category-valued 2-functors. Journal of Pure and Applied
Algebra, 8(2):149–181, 1976. doi:10.1016/0022-4049(76)90013-X.

23 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, 2013.

24 Floris van Doorn, Jakob von Raumer, and Ulrik Buchholtz. Homotopy type theory in lean.
In Interactive Theorem Proving, pages 479–495. Springer International Publishing, 2017.
doi:10.1007/978-3-319-66107-0_30.

https://doi.org/10.1016/0022-4049(76)90013-X
https://homotopytypetheory.org/book
https://doi.org/10.1007/978-3-319-66107-0_30

	1 Introduction
	1.1 Contributions
	1.1.1 The main connection (Constr)


	2 Additional related work
	2.1 Construction of nonrecursive 2-HITs
	2.2 Orthogonal factorization systems

	3 Background on type theory and colimits
	3.1 Type system
	3.2 Graphs
	3.3 Colimits in U

	4 Wild categories
	4.1 Orthogonal factorization systems

	5 The main connection
	5.1 Definition of A-colimits
	5.2 Misleading approach
	5.3 Our approach
	5.4 Action on maps

	6 Creation of colimits
	7 Preservation of left class of an OFS
	8 Mapping colimits to weak limits
	8.1 Decomposition of A-colimits into simpler pieces
	8.2 Generalized Mayer-Vietoris property

	9 Conclusion and future work

