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Cohomology Groups
{ mappings from holes in a space }

Cellular
cohomology for
CW complexes

Axiomatic
Eilenberg-Steenrod
cohomology

Dream: prove they are the same!
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CW complexes
inductively-de�ined spaces

points
lines
faces
(and more...)

Speci�ication: cells and how they a�ach
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A�aching: αn+1 : An+1 × Sn → Xn

    Xn is the construction up to dim. n

CW complexes
Sets of cells: An

αn+1(a,-)
Xn

a : An+1
Sn

X0 := A0

Xn+1 :=
An+1×Sn An+1

Xn Xn+1

αn+1
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Cellular Cohomology
{ mappings from holes in a space }

Cellular Homology
{ holes in a space }

dualize
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One-Dimensional Holes*
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*Holes are cycles in the classical homology theory
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One-Dimensional Holes*

a + b + c
- a - b - c
a + b + c + e + g + f

a

c b
d

holes

e f

g …

{ elements of Z[A1] forming cycles }

*Holes are cycles in the classical homology theory



7

One-Dimensional Holes

a

c b

{ elements of Z[A1] forming cycles }

boundary function ∂
∂(            ) = y - x

yx
a



7

One-Dimensional Holes

a

c b

{ elements of Z[A1] forming cycles }

boundary function ∂

set of holes = kernel of ∂

∂(            ) = y - x
yx

a



7

One-Dimensional Holes

a

c b

{ elements of Z[A1] forming cycles }

boundary function ∂x
y

z

set of holes = kernel of ∂

∂(            ) = y - x
yx

a



7

One-Dimensional Holes

a

c b

{ elements of Z[A1] forming cycles }

boundary function ∂x
y

z ∂(a+b+c) = (y - x) + (z - y)
                             + (x - z) = 0 

set of holes = kernel of ∂

∂(            ) = y - x
yx

a
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a

∂2(           ) = a + b + c
p

H1(X) := kernel of ∂1 / image of ∂2

First Homology Groups
{ un�illed one-dimensional holes }

2-dim. boundary function ∂2

(all holes) (�illed holes)(un�illed
holes)

a

c b
p

�illed holes = image of ∂2

c b
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Cn := Z[An] formal sums of cells (chains)

Homology Groups
{ un�illed holes }
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⋯ → Cn+2 → Cn+1 → Cn → Cn-1 → Cn-2 → ⋯
∂n∂n+1∂n+2 ∂n-1

Cn := Z[An] formal sums of cells (chains)

Homology Groups
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⋯ → Cn+2 → Cn+1 → Cn → Cn-1 → Cn-2 → ⋯
∂n∂n+1∂n+2 ∂n-1

Hn(X) := kernel of ∂n / image of ∂n+1

Cn := Z[An] formal sums of cells (chains)

Homology Groups
{ un�illed holes }
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Cohomology Groups

⋯ → Cn+2 → Cn+1 → Cn → Cn-1 → Cn-2 → ⋯
∂n∂n+1∂n+2 ∂n-1

Dualize by Hom(—, G). Let Cn = Hom(Cn, G).
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δnδn+1δn+2 δn-1
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Cohomology Groups

⋯ → Cn+2 → Cn+1 → Cn → Cn-1 → Cn-2 → ⋯
∂n∂n+1∂n+2 ∂n-1

Dualize by Hom(—, G). Let Cn = Hom(Cn, G).

⋯ ← Cn+2 ← Cn+1 ← Cn ← Cn-1 ← Cn-2 ← ⋯
δnδn+1δn+2 δn-1

Hn(X; G) := kernel of δn+1 / image of δn
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a

c b
p

∂2(           ) = a + b + c
a

c b
p

How to compute the coe�icients from α2?

Higher-Dim. Boundary
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α2(p,—) identify
points

squash
other loops

a a a

coe�icient = winding number of this map

a

c b
p

Higher-Dim. Boundary
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lower structs.
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αn+1(p,—) identify
lower structs.

squash
Sn Xn Xn/Xn-1≃⋁Sn Sn

coe�icient = degree of this map

- squashing needs decidable equality
- linear sum needs closure-�initeness

Higher-Dim. Boundary

α2(p,—)
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Higher-Dim. Boundary

An×Sn-1 An

Xn-1 Xn

1 Xn/Xn-1≃⋁Sn

An+1×Sn An+1

Xn+1

Sn

Sn
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Cohomology Groups
{ mappings from holes in a space }

Cellular
cohomology for
CW-complexes

Axiomatic
Eilenberg-Steenrod
cohomology

Dream: prove they are the same!

Hn(X; G)
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A family of functors hn(—):
     pointed spaces → abelian groups

Eilenberg-Steenrod* cohomology

1. hn+1(susp(X)) ≃ hn(X), natural in X

2.
A B

1 Coff hn(Coff)

hn(B)hn(A)

exact!

3. hn(⋁iXi) ≃ ∏ih
n(Xi)

if the index type
satis�ies set-level AC

4. hn(2) trivial for n ≠ 0

*Ordinary, reduced cohomology theory

f
hn(A)
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Cohomology Groups
{ mappings from holes in a space }

Cellular
cohomology for
CW-complexes

Axiomatic
Eilenberg-Steenrod
cohomology

Dream: prove they are the same!

Hn(X; G) hn(X)
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Our Dream
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Our Dream

hn(X) ≃ Hn(X; h0(2))

ker(δn+1)/im(δn)ker(δ'n+1)/im(δ'n) 
:=≃

?

1. Find δ' such that hn(X) ≃ ker(δ'n+1)/im(δ'n)
done and fully mechanized in Agda

2. Show δ and δ' are equivalent
domains and codomains are isomorphic
commutativity in progress

?
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For any pointed CW-complex X where

Our Dream: Step 1 (done!)

⋯ ← Dn+2 ← Dn+1 ← Dn ← Dn-1 ← Dn-2 ← ⋯
δ'nδ'n+1δ'n+2 δ'n-1

such that

hn(X) ≃ kernel of δ'n+1 / image of δ'n

1. all cell sets An satisfy set-level AC and
2. the point of A0 is separable (pt = x is decidable)

there exist homomorphisms δ'
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Long exact sequenses

A B

1 Coff hn(Coff)

hn(B)hn(A)
n++

f

Important Lemmas for Step 1
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1 Coff hn(Coff)

hn(B)hn(A)
n++

f

hm(Xn/Xn-1) ≃ hom(Z[An], h
0(2))

when m = n or trivial otherwise
hm(X0) ≃ hom(Z[A0\{pt}], h0(2))
when m = 0 or trivial otherwise

Wedges of cells

Important Lemmas for Step 1
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Long exact sequenses

A B

1 Coff hn(Coff)

hn(B)hn(A)
n++

f

hm(Xn/Xn-1) ≃ hom(Z[An], h
0(2))

when m = n or trivial otherwise
hm(X0) ≃ hom(Z[A0\{pt}], h0(2))
when m = 0 or trivial otherwise

Wedges of cells

trivial if
m ≠ n

Important Lemmas for Step 1
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Xn/n-1 Xn+1/n-1

1 Xn+1/n

hn(Xn+1/n) hn(Xn+1/n-1) hn(Xn/n-1)
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Xn/n-1 Xn+1/n-1
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Xn/n-1 Xn+1/n-1

1 Xn+1/n

hn(Xn+1/n) hn(Xn+1/n-1) hn(Xn/n-1)

hn+1(Xn+1/n) hn+1(Xn+1/n-1) hn+1(Xn/n-1)
our choice of δ'

trivial

trivial
coker(δ')

ker(δ')

surj

inj

≃
≃
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Xm Xm+1

1 Xm+1/m
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Xm Xm+1

1 Xm+1/m

hn(Xm+1/m) hn(Xm+1) hn(Xm) hn+1(Xm+1/m)

If n ≠ m, m+1, both ends trivial, hn(Xm+1) ≃ hn(Xm)
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Xm Xm+1

1 Xm+1/m

hn(Xm+1/m) hn(Xm+1) hn(Xm) hn+1(Xm+1/m)

If n ≠ m, m+1, both ends trivial, hn(Xm+1) ≃ hn(Xm)

hn(Xn-1) ≃ hn(Xn-2) ≃ ⋯ ≃ hn(X0), trivial

hn(Xn)
hn(Xn+1) ≃ hn(Xn+2) ≃ ⋯ ≃ hn(X)

three
possible

values
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hn(Xn/n-2) hn(Xn+1/n-2)

hn(Xn+1/n-1)hn(Xn/n-1)

≃ h
n (X)

≃ ker(δ'n+1)

coker(δ'n) ≃

inject

eq. class
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coker(δ'n) hn(X)

ker(δ'n+1)hn(Xn/n-1)
inject

eq. class
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coker(δ'n) hn(X)

ker(δ'n+1)hn(Xn/n-1)

Using group-theoretic magic...

inject

eq. class

hn(X) ≃ ker(δ'n+1)/im(δ'n) 
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Our Dream (updated)

hn(X) ≃ Hn(X; h0(2))

ker(δn+1)/im(δn)ker(δ'n+1)/im(δ'n) 
:=≃

1. Find δ' such that hn(X) ≃ ker(δ'n+1)/im(δ'n)
2. Show δ and δ' are equivalent

domains and codomains are isomorphic
commutativity in progress

?
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Cohomology Groups
Cellular coh.
for pointed
CW complexes

Ordinary reduced
cohomology
theories

Dream: prove they give the same groups
We made an important step in proving it


