Cellular
 Cohomology In Homotopy Type Theory

20180709
Ulrik Buchholtz
TU Darmstadt
Favonia
U of Minnesota

Cohomology Groups

\{ mappings from holes in a space \}

Cohomology Groups

 \{ mappings from holes in a space \}Cellular
cohomology for
CW complexes

Axiomatic
Eilenberg-Steenrod cohomology

Goal: prove they are the same!

CW complexes

 inductively-defined spaces
CW complexes inductively-defined spaces
 O
 \square
 points

CW complexes

inductively-defined spaces

points
lines

Data: cells and how they attach

CW complexes

Sets of cell indices: A_{n}
Attaching: $\alpha_{n+1}: A_{n+1} \times S^{n} \rightarrow X_{n}$
X_{n} is the construction up to dim. n

$$
\begin{aligned}
& X_{0}:=A_{0} \\
& X_{n+1}:= \\
& A_{n+1} \times S^{n} \longrightarrow A_{n+1} \\
& \alpha_{n+1} \downarrow \\
& \quad X_{n} \longrightarrow X_{n+1}
\end{aligned}
$$

CW complexes

Sets of cell indices: A_{n}
Attaching: $\alpha_{n+1}: A_{n+1} \times S^{n} \rightarrow X_{n}$
X_{n} is the construction up to dim. n

$$
\begin{aligned}
& X_{0}:=A_{0} \\
& X_{n+1}:= \\
& A_{n+1} \times S^{n} \longrightarrow A_{n+1} \\
& \alpha_{n+1} \downarrow \\
& \quad X_{n} \longrightarrow X_{n+1}
\end{aligned}
$$

CW complexes

Sets of cell indices: A_{n}
Attaching: $\alpha_{n+1}: A_{n+1} \times S^{n} \rightarrow X_{n}$
X_{n} is the construction up to dim. n

$$
\begin{aligned}
& \mathrm{X}_{0}:=\mathrm{A}_{0} \\
& X_{n+1}:= \\
& A_{n+1} \times S^{n} \longrightarrow A_{n+1} \\
& \begin{aligned}
\alpha_{n+1} \downarrow & \ulcorner\downarrow \\
\mathrm{X}_{\mathrm{n}} & \mathrm{X}_{\mathrm{n}+1}
\end{aligned}
\end{aligned}
$$

CW complexes

Sets of cell indices: A_{n}
Attaching: $\alpha_{n+1}: A_{n+1} \times S^{n} \rightarrow X_{n}$
X_{n} is the construction up to dim. n

$$
\begin{aligned}
& \mathrm{X}_{0}:=\mathrm{A}_{0} \\
& X_{n+1}:= \\
& A_{n+1} \times S^{n} \longrightarrow A_{n+1} \\
& \begin{array}{r}
\alpha_{n+1} \downarrow \\
\mathrm{X}_{\mathrm{n}} \longrightarrow \mathrm{X}_{\mathrm{n}+1}
\end{array}
\end{aligned}
$$

Cellular Cohomology

 \{ mappings from holes in a space \}\uparrow dualize
Cellular Homology
\{ holes in a space \}

One-Dimensional Holes*

 \{ elements of $Z\left[A_{1}\right]$ forming cycles \}

holes

$a+b+c$
$-a-b-c$
$a+b+c+e+g+f$
*Holes are cycles in the classical homology theory

One-Dimensional Holes

\{ elements of $Z\left[A_{1}\right]$ forming cycles $\}$

$$
\begin{aligned}
& \text { boundary function } \partial \\
& \left.\begin{array}{l}
\partial(\underset{y}{a} \underset{\sim}{a})
\end{array}\right)=y-x \\
& \begin{aligned}
\partial(a+b+c) & =(y-x)+(z-y) \\
\quad & +(x-z)=0
\end{aligned}
\end{aligned}
$$

set of holes $=$ kernel of ∂

First Homology Groups \{ unfilled one-dimensional holes \}

2-dim. boundary function ∂_{2}
$\partial_{2}(\underset{c}{a}$
filled holes $=$ image of ∂_{2}

First Homology Groups \{ unfilled one-dimensional holes \}

> 2-dim. boundary function ∂_{2}
> $\partial_{2}\left(a_{c}^{a}+b\right)=a+b+c$

filled holes $=$ image of ∂_{2}

$H_{1}(X):=$ kernel of $\partial_{1} /$ image of ∂_{2} (unfilled (all holes)
(filled holes) holes)

Homology Groups \{ unfilled holes \}

$$
\begin{aligned}
& C_{n}:=Z\left[A_{n}\right] \text { formal sums of cells (chains) } \\
& \cdots \rightarrow C_{n+2} \xrightarrow{\partial_{n+2}} C_{n+1} \xrightarrow{\partial_{n+1}} C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} C_{n-2} \rightarrow \cdots
\end{aligned}
$$

$$
H_{n}(X):=\text { kernel of } \partial_{n} / \text { image of } \partial_{n+1}
$$

Cohomology Groups

$\cdots \rightarrow C_{n+2} \xrightarrow{\partial_{n+2}} C_{n+1} \xrightarrow{\partial_{n+1}} C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} C_{n-2} \rightarrow \cdots$
Dualize by $\operatorname{Hom}(-, G)$. Let $C^{n}=\operatorname{Hom}\left(C_{n}, G\right)$.
$\ldots \leftarrow \mathrm{C}^{\mathrm{n}+2} \stackrel{\delta_{\mathrm{n}+2}}{\leftarrow} \mathrm{C}^{\mathrm{n}+1} \stackrel{\delta_{\mathrm{n}+1}}{\leftarrow} \mathrm{C}^{\mathrm{n}} \stackrel{\delta_{\mathrm{n}}}{\leftarrow} \mathrm{C}^{\mathrm{n}-1} \stackrel{\delta_{\mathrm{n}-1}}{\leftarrow} \mathrm{C}^{\mathrm{n}-2} \longleftarrow \ldots$
$H^{n}(X ; G):=$ kernel of $\delta_{n+1} /$ image of δ_{n}

2-Dimensional Boundary

How to compute the coefficients from α_{2} ?

2-Dimensional Boundary

coefficient $=$ winding number of this map (can be generalized to higher dimensions)

Cohomology Groups \{ mappings from holes in a space \}

Axiomatic
Eilenberg-Steenrod cohomology

Prove they are the same!

Eilenberg-Steenrod* cohomology

A family of functors $\mathrm{h}^{\mathrm{n}}(-)$: pointed spaces \rightarrow abelian groups

Eilenberg-Steenrod* cohomology

A family of functors $\mathrm{h}^{\mathrm{n}}(-)$: pointed spaces \rightarrow abelian groups

1. $h^{n+1}(\operatorname{susp}(X)) \simeq h^{n}(X)$, natural in X

Eilenberg-Steenrod* cohomology

A family of functors $\mathrm{h}^{\mathrm{n}}(-)$: pointed spaces \rightarrow abelian groups

1. $h^{n+1}(\operatorname{susp}(X)) \simeq h^{n}(X)$, natural in X
2.

*ordinary, reduced

Eilenberg-Steenrod* cohomology

A family of functors $\mathrm{h}^{\mathrm{n}}(-)$: pointed spaces \rightarrow abelian groups

1. $h^{n+1}(\operatorname{susp}(X)) \simeq h^{n}(X)$, natural in X
2. $h^{n}(A)$

Eilenberg-Steenrod* cohomology

A family of functors $\mathrm{h}^{\mathrm{n}}(-)$: pointed spaces \rightarrow abelian groups

1. $h^{n+1}(\operatorname{susp}(X)) \simeq h^{n}(X)$, natural in X
2. $h^{n}(A)$

3. $h^{n}\left(V_{i} X_{i}\right) \simeq \Pi_{i} h^{n}\left(X_{i}\right)$ if the index type is nice enough**
*ordinary, reduced **see our paper

Eilenberg-Steenrod* cohomology

A family of functors $h^{n}(-)$: pointed spaces \rightarrow abelian groups

1. $h^{n+1}(\operatorname{susp}(X)) \simeq h^{n}(X)$, natural in X
2. $h^{n}(A)$

3. $h^{n}\left(V_{i} X_{i}\right) \simeq \Pi_{i} h^{n}\left(X_{i}\right)$ if the index type is nice enough**
4. $h^{n}(2)$ trivial for $n \neq 0$
*ordinary, reduced **see our paper

Cohomology Groups \{ mappings from holes in a space \}

 Prove they are the same!

Proof Plan

$$
H^{n}\left(X ; h^{0}(2)\right) \simeq ? h^{n}(X)
$$

Proof Plan

$$
\begin{gathered}
H^{n}\left(X ; h^{0}(2)\right) \simeq ? h^{n}(X) \\
\pi \\
\operatorname{ker}\left(\delta_{n+1}\right) / \operatorname{im}\left(\delta_{n}\right) \quad \operatorname{ker}\left(\delta_{n+1}^{\prime}\right) / \operatorname{im}\left(\delta_{n}^{\prime}\right)
\end{gathered}
$$

1. Find δ^{\prime} such that $h^{n}(X) \simeq \operatorname{ker}\left(\delta_{n+1}^{\prime}\right) / \operatorname{im}\left(\delta_{n}^{\prime}\right)$

Proof Plan

$$
\begin{aligned}
& H^{n}\left(X ; h^{0}(2)\right) \simeq ? h^{n}(X) \\
& \text { ii } \quad \text { R } \\
& \operatorname{ker}\left(\delta_{n+1}\right) / \operatorname{im}\left(\delta_{n}\right) \quad \operatorname{ker}\left(\delta_{n+1}^{\prime}\right) / \operatorname{im}\left(\delta_{n}^{\prime}\right) \\
& \delta \simeq \delta^{\prime}
\end{aligned}
$$

1. Find δ^{\prime} such that $h^{n}(X) \simeq \operatorname{ker}\left(\delta_{n+1}^{\prime}\right) / \operatorname{im}\left(\delta_{n}^{\prime}\right)$
2. Show δ and δ^{\prime} are equivalent

Proof Plan

$$
\begin{aligned}
& H^{n}\left(X ; h^{0}(2)\right) \simeq ? h^{n}(X) \\
& \text { ii } \quad \text { R } \\
& \operatorname{ker}\left(\delta_{n+1}\right) / \operatorname{im}\left(\delta_{n}\right) \quad \operatorname{ker}\left(\delta_{n+1}^{\prime}\right) / \operatorname{im}\left(\delta_{n}^{\prime}\right) \\
& \delta \simeq \delta^{\prime}
\end{aligned}
$$

1. Find δ^{\prime} such that $h^{n}(X) \simeq \operatorname{ker}\left(\delta_{n+1}^{\prime}\right) / \operatorname{im}\left(\delta_{n}^{\prime}\right)$
2. Show δ and δ^{\prime} are equivalent

As usual, fully mechanized in Agda!

Step 1: Reverse Engineering

For any theory h, finite pointed CW-complex X , there exist homomorphisms δ^{\prime}

$$
\cdots \stackrel{\delta_{n+2}^{\prime}}{\delta^{\prime} \delta_{n+1}^{\prime} \quad \delta_{n}^{\prime}{ }^{n+2} \stackrel{\delta_{n-1}^{\prime}}{\leftarrow} D^{n+1} \stackrel{D^{n}}{\leftarrow} D^{n-1} \stackrel{D^{n-2}}{\leftarrow} \leftarrow \cdots}
$$

such that
$h^{n}(X) \simeq$ kernel of $\delta_{n+1}^{\prime} /$ image of δ_{n}^{\prime}

Important Lemmas for Step 1

Long exact sequenses

Important Lemmas for Step 1

Long exact sequenses

$$
\begin{aligned}
& h^{n}(A) \text { \&................ } h^{n}(B) \\
& A \xrightarrow[x_{x}-\ell^{\prime}]{ } \\
& 1 \longrightarrow \operatorname{Cof}_{\mathrm{f}} \mathrm{~h}^{\mathrm{n}}\left(\operatorname{Cof}_{\mathrm{f}}\right) \\
& \text { ュー・- - - - - - } \\
& \mathrm{h}^{\mathrm{n}}\left(\operatorname{Cof}_{\mathrm{f}}\right) \longrightarrow \mathrm{h}^{\mathrm{n}}(\mathrm{~B}) \longrightarrow \mathrm{h}^{\mathrm{n}}(\mathrm{~A}) \\
& h^{n+1}\left(\mathrm{Cof}_{\mathrm{f}}\right) \rightarrow \mathrm{h}^{\mathrm{n+1}}(\mathrm{~B}) \rightarrow \mathrm{h}^{\mathrm{n+1}}(\mathrm{~A})
\end{aligned}
$$

Important Lemmas for Step 1

Long exact sequenses

$$
\begin{aligned}
& h^{n}(A)<f^{\prime} \\
& A \xrightarrow{A \times+} \mathrm{f} \\
& 1 \longrightarrow \operatorname{Cof}_{f} \mathrm{~h}^{\mathrm{n}}\left(\mathrm{Cof}_{\mathrm{f}}\right)
\end{aligned}
$$

Wedges of cells
$h^{m}\left(X_{n} / X_{n-1}\right) \simeq \operatorname{hom}\left(Z\left[A_{n}\right], h^{0}(2)\right)$ when $m=n$ or trivial otherwise $h^{m}\left(X_{0}\right) \simeq \operatorname{hom}\left(Z\left[A_{0} \backslash\{p t\}\right], h^{0}(2)\right)$
trivial if $\mathrm{m} \neq \mathrm{n}$

Ultimate Cofiber Diagram

$$
X_{n / m}:=X_{n} / X_{m}
$$

Ultimate Cofiber Diagram

$$
X_{n / m}:=X_{n} / X_{m}
$$

Plan:

Obtain long exact sequences and use group-theoretic magic

Ultimate Cofiber Diagram

$$
X_{0} \longrightarrow \cdots \longrightarrow X_{n-1} \longrightarrow X_{n} \longrightarrow X_{n+1}
$$

$$
\stackrel{\downarrow}{1} \rightarrow \cdots \rightarrow X_{n-1 / 0}^{\downarrow} \rightarrow X_{n / 0}^{\downarrow} \rightarrow X_{n+1 / 0}^{\downarrow}
$$

$$
X_{n / m}:=X_{n} / X_{m}
$$

Plan:

Obtain long exact sequences and use group-theoretic magic

$\underset{\text { theory }}{\text { group }}$
$h^{n}(X) \simeq \operatorname{ker}\left(\delta_{n+1}^{\prime}\right) / \operatorname{im}\left(\delta_{n}^{\prime}\right)$

Proof Plan (updated)

1. Find δ^{\prime} such that $h^{n}(X) \simeq \operatorname{ker}\left(\delta_{n+1}^{\prime}\right) / i m\left(\delta_{n}^{\prime}\right)$
2. Show δ and δ^{\prime} are equivalent

Step 2: Calculation

The $n=0$ case $\left(C^{0} \simeq D^{0}\right)$ is interesting

Summary

Cellular
cohomology groups

Ordinary reduced cohomology groups

Summary

Cellular Ordinary reduced cohomology \simeq cohomology groups (finite) groups

To-Do

Infinity: colimits
Homology \Rightarrow Poincaré duality, ...
Parametrization \Rightarrow non-orientability, ...

Higher-Dim. Boundary

coefficient $=$ degree of this map

Higher-Dim. Boundary

coefficient $=$ degree of this map

- squashing needs decidable equality
- linear sum needs closure-finiteness (free for finite cases)

Higher-Dim. Boundary

S^{n}

$X_{n / n-1} \rightarrow X_{n+1 / n-1}$

$$
\begin{gathered}
h^{n}\left(X_{n+1 / n}\right) \longrightarrow h^{n}\left(X_{n+1 / n-1}\right) \longrightarrow h^{n}\left(X_{n / n-1}\right) \\
, \\
h^{n+1}\left(X_{n+1 / n}^{\prime}\right) \longrightarrow h^{n+1}\left(X_{n+1 / n-1}\right) \longrightarrow h^{n+1}\left(X_{n / n-1}\right)
\end{gathered}
$$

$$
\begin{gathered}
h^{n}\left(X_{n+1 / n}\right) \longrightarrow h^{n}\left(X_{n+1 / n-1}\right) \longrightarrow h^{n}\left(X_{n / n-1}\right) \\
{ }^{\prime} \text { our choice of } \delta^{\prime} \\
h^{n+1}\left(X_{n+1 / n}^{\prime \prime}\right) \longrightarrow h^{n+1}\left(X_{n+1 / n-1}\right) \longrightarrow h^{n+1}\left(X_{n / n-1}\right)
\end{gathered}
$$

$$
\begin{gathered}
X_{n / n-1} \rightarrow X_{n+1 / n-1} \\
\downarrow \\
\\
\\
1 \rightarrow X_{n+1 / n}
\end{gathered}
$$

$\operatorname{ker}\left(\delta^{\prime}\right)$

$$
\begin{gathered}
\stackrel{\text { trivial }}{h^{n}\left(X_{n+1 / n}\right)} \longrightarrow h^{n}\left(X_{n+1 / n-1}^{l /}\right) \xrightarrow{\text { inj }} h^{n}\left(X_{n / n-1}\right) \\
h^{n+1}\left(X_{n+1 / n}^{\prime \prime}\right) \underset{\text { surj }}{\longrightarrow} h^{n+1}\left(X_{n+1 / n-1}\right) \longrightarrow h^{n+1}\left(X_{n / n-1}\right) \\
\operatorname{coker}\left(\delta^{\prime}\right)
\end{gathered}
$$

$X_{m} \longrightarrow X_{m+1}$

$h^{n}\left(X_{m+1 / m}\right) \rightarrow h^{n}\left(X_{m+1}\right) \rightarrow h^{n}\left(X_{m}\right) \rightarrow h^{n+1}\left(X_{m+1 / m}\right)$
If $\mathrm{n} \neq \mathrm{m}, \mathrm{m}+1$, both ends trivial, $\mathrm{h}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{m}+1}\right) \simeq \mathrm{h}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{m}}\right)$
three $h^{n}\left(X_{n-1}\right) \simeq h^{n}\left(X_{n-2}\right) \simeq \ldots \simeq h^{n}\left(X_{0}\right)$, trivial possible $h^{n}\left(X_{n}\right)$ values $h^{n}\left(X_{n+1}\right) \simeq h^{n}\left(X_{n+2}\right) \simeq \ldots \simeq h^{n}(X)$

$\operatorname{coker}\left(\delta_{n}^{\prime}\right) \approx$
$h^{n}\left(X_{n / n-2}\right) \longleftrightarrow h^{n}\left(X_{n+1 / n-2}\right)$
$\begin{array}{cc}\text { eq. class } \uparrow & \uparrow \\ h^{n}\left(X_{n / n-1}\right) & \longleftrightarrow h^{n}\left(X_{n+1 / n-1}\right)\end{array} \approx \operatorname{ker}\left(\delta^{\prime}{ }_{n+1}\right)$
inject

$\operatorname{coker}\left(\delta_{\mathrm{n}}^{\prime}\right) \longleftrightarrow \mathrm{h}^{\mathrm{n}}(\mathrm{X})$ eq. class \uparrow
 $$
h^{n}\left(X_{n / n-1}\right) \longleftarrow \operatorname{ker}\left(\delta_{n+1}^{\prime}\right)
$$
 inject

Chasing the diagram, $h^{n}(X) \simeq \operatorname{ker}\left(\delta^{\prime}{ }_{n+1}\right) / \operatorname{im}\left(\delta_{n}^{\prime}\right)$

