Cohomology Groups

\{ mappings from holes in a space \}
Cohomology Groups

\{ mappings from holes in a space \}

Cellular cohomology for CW complexes

Axiomatic Eilenberg-Steenrod cohomology

Goal: prove they are the same!
CW complexes
inductively-defined spaces
CW complexes
inductively-defined spaces
points
CW complexes
inductively-defined spaces

points
lines
CW complexes
inductively-defined spaces

points
lines
faces
(and more...)

Data: cells and how they attach
CW complexes

Sets of cell indices: A_n

Attaching: $\alpha_{n+1}: A_{n+1} \times S^n \rightarrow X_n$

X_n is the construction up to dim. n

$X_0 := A_0$

$X_{n+1} :=$

$A_{n+1} \times S^n \rightarrow A_{n+1}$

α_{n+1}

Γ

$X_n \rightarrow X_{n+1}$
CW complexes

Sets of cell indices: A_n

Attaching: $\alpha_{n+1} : A_{n+1} \times S^n \to X_n$

X_n is the construction up to dim. n

$X_0 := A_0$

$X_{n+1} :=$

\[A_{n+1} \times S^n \longrightarrow A_{n+1} \]

\[\alpha_{n+1} \downarrow \quad \Gamma \downarrow \]

\[X_n \quad \longrightarrow \quad X_{n+1} \]

X_n
CW complexes

Sets of cell indices: A_n

Attaching: $\alpha_{n+1} : A_{n+1} \times S^n \to X_n$

X_n is the construction up to dim. n

$X_0 := A_0$

$X_{n+1} :=$

$A_{n+1} \times S^n \to A_{n+1}$

$\alpha_{n+1} \downarrow$

Γ

$X_n \to X_{n+1}$
CW complexes

Sets of cell indices: A_n

Attaching: $\alpha_{n+1} : A_{n+1} \times S^n \rightarrow X_n$

X_n is the construction up to dim. n

\[X_0 := A_0 \]

\[X_{n+1} := \]

\[A_{n+1} \times S^n \rightarrow A_{n+1} \]

\[\alpha_{n+1} \]

\[X_n \]

\[\Gamma \]

\[X_{n+1} \]
Cellular Cohomology
\{ mappings from holes in a space \}

Cellular Homology
\{ holes in a space \}

dualize
One-Dimensional Holes*
{ elements of $\mathbb{Z}[A_1]$ forming cycles }

\[a + b + c \]
\[-a - b - c \]
\[a + b + c + e + g + f \]
...

*Holes are cycles in the classical homology theory
One-Dimensional Holes

\{ \text{elements of } \mathbb{Z}\left[A_1 \right] \text{ forming cycles} \}

boundary function ∂

$\partial(\begin{array}{c} a \\ x \end{array}) = y - x$

$\partial(a+b+c) = (y - x) + (z - y) + (x - z) = 0$

set of holes = kernel of ∂
First Homology Groups
{ unfilled one-dimensional holes }

\[\partial_2(a + b + c) = \text{filled holes} = \text{image of } \partial_2 \]
First Homology Groups

\{ \text{unfilled one-dimensional holes} \}

\[\partial_2() = a + b + c \]

2-dim. boundary function \(\partial_2 \)

\(\partial_2() = a + b + c \)

filled holes = image of \(\partial_2 \)

\(H_1(X) := \text{kernel of } \partial_1 / \text{image of } \partial_2 \)

(unfilled holes) \hspace{1cm} (all holes) \hspace{1cm} (filled holes)
Homology Groups

\{ \text{unfilled holes} \}

\[C_n := \mathbb{Z}[A_n] \text{ formal sums of cells (chains)} \]

\[\cdots \rightarrow C_{n+2} \rightarrow C_{n+1} \rightarrow C_n \rightarrow C_{n-1} \rightarrow C_{n-2} \rightarrow \cdots \]

\[H_n(X) := \text{kernel of } \partial_n / \text{image of } \partial_{n+1} \]
Cohomology Groups

\[\ldots \rightarrow C_{n+2} \rightarrow C_{n+1} \rightarrow C_n \rightarrow C_{n-1} \rightarrow C_{n-2} \rightarrow \ldots \]

Dualize by \(\text{Hom}(-, G) \). Let \(C^n = \text{Hom}(C_n, G) \).

\[\ldots \leftarrow C^{n+2} \leftarrow C^{n+1} \leftarrow C^n \leftarrow C^{n-1} \leftarrow C^{n-2} \leftarrow \ldots \]

\(H^n(X; G) := \text{kernel of } \delta_{n+1} / \text{image of } \delta_n \)
2-Dimensional Boundary

\[\partial_2(p) = a + b + c \]

How to compute the coefficients from \(\alpha_2 \)?
2-Dimensional Boundary

\[\alpha_2(p, -) \]

identify points

squash other loops

\text{coefficient} = \text{winding number of this map}

(can be generalized to higher dimensions)
Cohomology Groups
{ mappings from holes in a space }

Cellular cohomology for CW-complexes

$H^n(X; G)$

Axiomatic Eilenberg-Steenrod cohomology

Prove they are the same!
Eilenberg-Steenrod* cohomology

A family of functors $h^n(__)$: pointed spaces \rightarrow abelian groups

*ordinary, reduced
Eilenberg-Steenrod* cohomology

A family of functors $h^n(__)$:
pointed spaces \rightarrow abelian groups

1. $h^{n+1}(\text{susp}(X)) \cong h^n(X)$, natural in X

*ordinary, reduced
Eilenberg-Steenrod* cohomology

A family of functors $h^n(-)$:
pointed spaces \rightarrow abelian groups

1. $h^{n+1}(\text{susp}(X)) \cong h^n(X)$, natural in X

2. $A \xrightarrow{f} B$

$\downarrow \quad \downarrow$

$1 \xrightarrow{} \text{Cof}_f$

*ordinary, reduced
Eilenberg-Steenrod* cohomology

A family of functors $h^n(-)$:
pointed spaces \rightarrow abelian groups

1. $h^{n+1}(\text{susp}(X)) \cong h^n(X)$, natural in X

2. $h^n(A) \xleftarrow{f} h^n(B)$

$A \xrightarrow{f} B \xrightarrow{\Gamma} \text{Cof}_f \xrightarrow{h^n} h^n(\text{Cof}_f)$

*ordinary, reduced
Eilenberg-Steenrod* cohomology

A family of functors $h^n(__\):$
pointed spaces \rightarrow abelian groups

1. $h^{n+1}(\text{susp}(X)) \cong h^n(X)$, natural in X

2. $h^n(A) \leftarrow h^n(B)$

3. $h^n(\bigvee_i X_i) \cong \prod_i h^n(X_i)$
if the index type is nice enough**

*ordinary, reduced

**see our paper
Eilenberg-Steenrod\(^*\) cohomology

A family of functors \(h^n(_):\) pointed spaces \(\rightarrow\) abelian groups

1. \(h^{n+1}(\text{susp}(X)) \cong h^n(X),\) natural in \(X\)

2. \(h^n(A) \xrightarrow{f} h^n(B)\) if \(f\) is exact!

3. \(h^n(\bigvee_i X_i) \cong \prod_i h^n(X_i)\) if the index type is nice enough\(^**\)

4. \(h^n(2)\) trivial for \(n \neq 0\)

\(^*\) ordinary, reduced \(^**\) see our paper
Cohomology Groups
\{ mappings from holes in a space \}

\[H^n(X; G) \quad h^n(X) \]

Cellular cohomology for CW-complexes
Axiomatic Eilenberg-Steenrod cohomology

Prove they are the same!
Proof Plan

$H^n(X; h^0(2)) \cong? h^n(X)$
Proof Plan

\[H^n(X; h^0(2)) \cong \ker(\delta_{n+1})/\text{im}(\delta_n) \]\n
1. Find \(\delta' \) such that \(h^n(X) \cong \ker(\delta'_{n+1})/\text{im}(\delta'_n) \)
Proof Plan

\[H^n(X; h^0(2)) \cong h^n(X) \]

\[\cong \frac{\ker(\delta_{n+1})}{\text{im}(\delta_n)} \cong \frac{\ker(\delta'_{n+1})}{\text{im}(\delta'_n)} \]

1. Find \(\delta' \) such that \(h^n(X) \cong \frac{\ker(\delta'_{n+1})}{\text{im}(\delta'_n)} \)

2. Show \(\delta \) and \(\delta' \) are equivalent
Proof Plan

\[H^n(X; h^0(2)) \cong h^n(X) \]

\[\ker(\delta_{n+1})/\text{im}(\delta_n) \cong \ker(\delta'_{n+1})/\text{im}(\delta'_n) \]

\[\delta \cong \delta' \]

1. Find \(\delta' \) such that \(h^n(X) \cong \ker(\delta'_{n+1})/\text{im}(\delta'_n) \)

2. Show \(\delta \) and \(\delta' \) are equivalent

As usual, fully mechanized in Agda!
Step 1: Reverse Engineering

For any theory \(h \), finite pointed CW-complex \(X \), there exist homomorphisms \(\delta' \)

\[
\delta'_{n+2} \leftarrow \delta'_{n+1} \leftarrow \delta'_n \leftarrow \delta'_{n-1} \leftarrow \ldots
\]

\[
\underset{\text{such that}}{\text{such that}}
\]

\[h^n(X) \cong \text{kernel of } \delta'_{n+1} / \text{image of } \delta'_n \]
Important Lemmas for Step 1

Long exact sequences

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \downarrow \\
1 & \xrightarrow{\text{Cof}_f} & \text{Cof}_f
\end{array}
\]
Important Lemmas for Step 1

Long exact sequences

\[h^n(A) \xleftarrow{f} h^n(B) \xrightarrow{n++} h^n(C_{of}) \]

\[h^{n+1}(A) \xrightarrow{n} h^{n+1}(B) \xrightarrow{n+1}(C_{of}) \]
Important Lemmas for Step 1

Long exact sequences

\[h^n(A) \xrightarrow{f} h^n(B) \]

\[A \xrightarrow{n++} B \]

\[1 \xrightarrow{} \text{Cof}_f h^n(\text{Cof}_f) \]

Wedges of cells

\[h^m(X_n/X_{n-1}) \cong \text{hom}(\mathbb{Z}[A_n], h^0(2)) \]

when \(m = n \) or trivial otherwise

\[h^m(X_0) \cong \text{hom}(\mathbb{Z}[A_0\setminus\{\text{pt}\}], h^0(2)) \]

when \(m = 0 \) or trivial otherwise

\[\text{trivial if } m \neq n \]
Ultimate Cofiber Diagram

\[X_0 \longrightarrow \cdots \longrightarrow X_{n-1} \longrightarrow X_n \longrightarrow X_{n+1} \longrightarrow \cdots \]

\[1 \longrightarrow \cdots \longrightarrow X_{n-1/0} \longrightarrow X_{n/0} \longrightarrow X_{n+1/0} \longrightarrow \cdots \]

\[X_{n/m} := X_n/X_m \]

\[1 \longrightarrow X_{n/n-1} \longrightarrow X_{n+1/n-1} \longrightarrow \cdots \]

\[1 \longrightarrow X_{n+1/n} \longrightarrow \cdots \]
Ultimate Cofiber Diagram

\[\begin{array}{cccccccc}
X_0 & \rightarrow & \cdots & \rightarrow & X_{n-1} & \rightarrow & X_n & \rightarrow & X_{n+1} \\
\downarrow & & & & \downarrow & & \downarrow & & \downarrow \\
1 & \rightarrow & \cdots & \rightarrow & X_{n-1/0} & \rightarrow & X_{n/0} & \rightarrow & X_{n+1/0} \\
\downarrow & & & & \downarrow & & \downarrow & & \downarrow \\
& & & & 1 & \rightarrow & \cdots & \rightarrow & X_{n/n-1} \\
& & & & \downarrow & & \downarrow & & \downarrow \\
& & & & 1 & \rightarrow & \cdots & \rightarrow & X_{n+1/n} \\
\end{array} \]

\(X_{n/m} := \frac{X_n}{X_m} \)

Plan:
Obtain long exact sequences and use group-theoretic magic
Ultimate Cofiber Diagram

\[X_0 \rightarrow \cdots \rightarrow X_{n-1} \rightarrow X_n \rightarrow X_{n+1} \rightarrow \cdots \]

\[1 \rightarrow \cdots \rightarrow X_{n-1/0} \rightarrow X_{n/0} \rightarrow X_{n+1/0} \rightarrow \cdots \]

\[X_{n/m} := X_n/X_m \]

Plan:

Obtain long exact sequences and use group-theoretic magic
\[h^n(X) \approx \ker(\delta'_{n+1})/\text{im}(\delta'_n) \]
Proof Plan (updated)

\[H^n(X; h^0(2)) \cong h^n(X) \]

\[
\begin{array}{ccc}
\text{ker}(\delta_{n+1})/\text{im}(\delta_n) & \cong & \text{ker}(\delta_{n+1}')/\text{im}(\delta_n') \\
\end{array}
\]

1. Find \(\delta' \) such that \(h^n(X) \cong \ker(\delta_{n+1}')/\text{im}(\delta_n') \)

2. Show \(\delta \) and \(\delta' \) are equivalent
Step 2: Calculation

\[\delta_{n+2} \leftarrow C_{n+2} \leftarrow C_{n+1} \leftarrow C_n \leftarrow C_{n-1} \leftarrow C_{n-2} \leftarrow \ldots \]

\[\delta'_{n+2} \leftarrow D_{n+2} \leftarrow D_{n+1} \leftarrow D_n \leftarrow D_{n-1} \leftarrow D_{n-2} \leftarrow \ldots \]

The n=0 case \((C^0 \simeq D^0)\) is interesting
Summary

Cellular cohomology groups \cong \text{Ordinary reduced cohomology groups (finite)}
Summary

Cellular cohomology groups \(\cong \) Ordinary reduced cohomology groups

(finite)

To-Do

Infinity: colimits
Homology \(\Rightarrow \) Poincaré duality, ...
Parametrization \(\Rightarrow \) non-orientability, ...
Higher-Dim. Boundary

\[S^n \xrightarrow{\alpha_{n+1}(p,-)} X_n \xrightarrow{\alpha_2(p,-)} X_n/X_{n-1} \cong \bigvee S^n \xrightarrow{\text{squash}} S^n \]

- \(\alpha_{n+1}(p,-)\) identify lower structs.
- \(\alpha_2(p,-)\)

Coefficient = degree of this map
Higher-Dim. Boundary

$S^n \xrightarrow{\alpha_2(p,-)} X_n \xrightarrow{\alpha_{n+1}(p,-)} X_n/X_{n-1} \cong \bigvee S^n \xrightarrow{\text{squash}} S^n$

identify lower structs.

coefficient = degree of this map

- squashing needs decidable equality
- linear sum needs closure-finiteness (free for finite cases)
Higher-Dim. Boundary

\[
\begin{align*}
A_n \times S^{n-1} &\longrightarrow A_n \\
S^n &\downarrow \\
X_{n-1} &\longrightarrow X_n \\
&\quad \searrow S^n
\end{align*}
\]

\[
\begin{align*}
A_{n+1} \times S^n &\longrightarrow A_{n+1} \\
S^n &\downarrow \\
X_{n+1} &\longrightarrow X_n \\
&\quad \searrow S^n \\
X_n/X_{n-1} &\approx \vee S^n
\end{align*}
\]
\[X_{n/n-1} \rightarrow X_{n+1/n-1} \]

\[1 \rightarrow X_{n+1/n} \]
\[h^n(X_{n+1/n}) \rightarrow h^n(X_{n+1/n-1}) \rightarrow h^n(X_{n/n-1}) \]

\[h^{n+1}(X_{n+1/n}) \rightarrow h^{n+1}(X_{n+1/n-1}) \rightarrow h^{n+1}(X_{n/n-1}) \]
\[h^n(X_{n+1/n}) \rightarrow h^n(X_{n+1/n-1}) \rightarrow h^n(X_{n/n-1}) \]

our choice of \(\delta' \)

\[h^{n+1}(X_{n+1/n}) \rightarrow h^{n+1}(X_{n+1/n-1}) \rightarrow h^{n+1}(X_{n/n-1}) \]
\[
\begin{align*}
&X_{n/n-1} \xrightarrow{} X_{n+1/n-1} \\
&1 \xrightarrow{} X_{n+1/n}
\end{align*}
\]

\[
\begin{align*}
&h^n(X_{n+1/n}) \xrightarrow{\text{trivial}} h^n(X_{n+1/n-1}) \xrightarrow{\text{inj}} h^n(X_{n/n-1}) \\
&h^{n+1}(X_{n+1/n}) \xrightarrow{\text{surj}} h^{n+1}(X_{n+1/n-1}) \xrightarrow{\text{inj}} h^{n+1}(X_{n/n-1}) \xrightarrow{\text{trivial}} \text{coker}(\delta')
\end{align*}
\]
$h^n(X_{m+1/m}) \rightarrow h^n(X_{m+1}) \rightarrow h^n(X_m) \rightarrow h^{n+1}(X_{m+1/m})$

If $n \neq m, m+1$, both ends trivial, $h^n(X_{m+1}) \cong h^n(X_m)$

three possible values:

\[
\begin{align*}
 h^n(X_{n-1}) & \cong h^n(X_{n-2}) \cong \ldots \cong h^n(X_0), \text{ trivial} \\
 h^n(X_n) \\
 h^n(X_{n+1}) & \cong h^n(X_{n+2}) \cong \ldots \cong h^n(X)
\end{align*}
\]
$coker(\delta'_n) \cong h^n(X_{n/n-2}) \leftarrow h^n(X_{n+1/n-2}) \cong h^n(X)$

$\cong ker(\delta'_{n+1})$

eq. class inject
Chasing the diagram,

\[h^n(X) \cong \ker(\delta'_{n+1})/\text{im}(\delta'_n) \]