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Abstract

This is the third in a series of papers extending Martin-Lof’s meaning explanations of
dependent type theory to a Cartesian cubical realizability framework that accounts for higher-
dimensional types. We extend this framework to include a cumulative hierarchy of univalent Kan
universes of Kan types; exact equality and other pretypes lacking Kan structure; and a cumulative
hierarchy of pretype universes. As in Parts I and II, the main result is a canonicity theorem
stating that closed terms of boolean type evaluate to either true or false. This establishes the
computational interpretation of Cartesian cubical higher type theory based on cubical programs
equipped with a deterministic operational semantics.

1 Introduction

In Parts I and II of this series [Angiuli et al., 2016; Angiuli and Harper, 2016] we developed
mathematical meaning explanations for higher-dimensional type theories with Cartesian cubical
structure [Angiuli et al., 2017]. In Part III, we extend these meaning explanations to support an
infinite hierarchy of Kan, univalent universes [Voevodsky, 2010].

Mathematical meaning explanations We define the judgments of computational higher type
theory as dimension-indexed relations between programs equipped with a deterministic operational
semantics. These relations are cubical analogues of Martin-Lof’s meaning explanations [Martin-Lof,
1984] and of the original Nuprl type theory [Constable, et al., 1985], in which types are merely
specifications of the computational behavior of programs. Because types are defined behaviorally, we
trivially obtain the canonicity property at every type. (Difficulties instead lie in checking formation,
introduction, and elimination rules. In contrast, the type theory of Cohen et al. [2018] is defined by
such rules, and a separate argument by Huber [2016] establishes canonicity.)

Theorem 1 (Canonicity). If M is a closed term of type bool, then M | true or M |} false.
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In a sense, our meaning explanations serve as cubical logical relations, or a cubical realizability
model, justifying the rules presented in Section 6. However, those rules are intended only for
reference; the rules included in the REDPRL proof assistant [Sterling et al., 2017] differ substantially
(as described in Section 6). Moreover, as M € A [z1,...,x,] means that M is a (n-dimensional)
program with behavior A, programs do not have unique types, nor are typing judgments decidable.

Cartesian cubes Our programs are parametrized by dimension names x,y,... ranging over an
abstract interval with end points 0 and 1. Programs with at most n free dimension names represent
n-dimensional cubes: points (n = 0), lines (n = 1), squares (n = 2), and so forth. Substituting
(0/x) or (1/x) yields the left or right face of a cube in dimension x; substituting (y/x) yields the
x,y diagonal; and weakening by y yields a cube degenerate in the y direction.

The resulting notion of cubes is Cartesian [Licata and Brunerie, 2014; Awodey, 2016; Buchholtz
and Morehouse, 2017]. In contrast, the Bezem et al. [2014] model of type theory has only faces and
degeneracies, while the Cohen et al. [2018] type theory uses a de Morgan algebra of cubes with
connections (z Ay, x V y) and reversals (1 — z) in addition to faces, diagonals, and degeneracies.
The Cartesian notion of cube is appealing because it results in a structural dimension context (with
exchange, weakening, and contraction) and requires no equational reasoning at the dimension level.

Kan operations Kan types are types equipped with coercion (coe) and homogeneous composition
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(hcom) operations. If A is a Kan type varying in x, the coercion coe,”J" (M) sends an element M
of A(r/x) to an element of A(r’/z), such that the coercion is equal to M when r = r’. For example,
given a point M in the (0/z) side of the type A, written M € A(0/x) [], we can coerce it to a point

coeX L (M) in A(1/z), or coerce it to an z-line coeX”3*(M) between M and coel”;!(M).

Y coel ¥ (M) coe1 (A1) N beom®=Y (AL
z.A 0 com, Y(M;---) | N1

If A is a Kan type, then homogeneous composition in A states that any open box in A has a
composite; for example, hcom?ﬁl(M; x=0<y.Ng,x =1 < y.Nq) is the bottom line of the above
square. The cap M is a line on the (0/y) side of the box; y.Ny (resp., y.N1) is a line on the x =0
(resp., x = 1) side of the box; and the composite is on the (1/y) side of the box. Furthermore,
the cap and tubes must be equal where they coincide (the zz = 0 side of M with the (0/y) side
of Np), every pair of tubes must be equal where they coincide (vacuous here, as z =0 and z = 1
are disjoint) and the composite is equal to the tubes where they coincide (the z = 0 side of the
composite with the (1/y) side of Ny). Fillers are the special case in which we compose to a free
dimension name y; here, hcom?fy(M; x=0< y.Ng,z =1 < y.Ny) is the entire square.

These Kan operations are variants of the uniform Kan conditions first proposed by Bezem et al.
[2014]. Notably, Bezem et al. [2014] and Cohen et al. [2018] combine coercion and composition into
a single heterogeneous composition operation and do not allow compositions from or to dimension
names. Unlike both Cohen et al. [2018] and related work by Licata and Brunerie [2014], we allow
tubes along diagonals (z = z), and require every non-trivial box to contain at least one opposing



pair of tubes z = 0 and x = 1. The latter restriction (detailed in Definition 21) allows us to achieve
canonicity for zero-dimensional elements of the circle and weak booleans.

Pretypes and exact equality As in the “two-level type theories” of Voevodsky [2013], Altenkirch
et al. [2016], and Boulier and Tabareau [2017], we allow for pretypes that are not necessarily Kan. In
particular, we have types Eq 4 (M, N) of exact equalities that internalize (and reflect into) judgmental
equalities M=N € A [V]. Exact equality types are not, in general, Kan, as one cannot compose exact
equalities with non-degenerate lines. However, unlike in prior two-level type theories, certain exact
equality types are Kan (for example, when A = nat; see Section 7 for a precise characterization).
We write A type,. [V] when A is a pretype, and A typeg,, [¥] when A is a Kan type. Pretypes and
Kan types are both closed under most type formers; for example, if A type,. [¥] and B type, [¥]
then A — B type, [V].

. . . . . . e
Universes and univalence We have two cumulative hierarchies of universes L{]Pr and u]Kan

internalizing pretypes and Kan types respectively. The Kan universes U]Ka” are both Kan and
univalent. (See https://git.io/vFjuQ for a REDPRL-checked proof of the univalence theorem.)
Homogeneous compositions of Kan types are types whose elements are formal boxes of elements of
the constituent types. Every equivalence F between A and B gives rise to the V,(A, B, E) type
whose z-faces are A and B; such types are a special case of “Glue types” [Cohen et al., 2018].

RedPRL REDPRL is an interactive proof assistant for computational higher type theory in
the tradition of LCF and Nuprl; the REDPRL logic is principally organized around dependent
refinement rules [Spiwack, 2011; Sterling and Harper, 2017], which are composed using a simple
language of proof tactics. Unlike the inference rules presented in Section 6, REDPRL’s rules are
given in the form of a goal-oriented sequent calculus which is better-suited for both programming
and automation.
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2 Programming language

The programming language itself has two sorts—dimensions and terms—and binders for both sorts.
Terms are an ordinary untyped lambda calculus with constructors; dimensions are either dimension
constants (0 or 1) or dimension names (z,y,...), the latter behaving like nominal constants [Pitts,
2015]. Dimensions may appear in terms: for example, loop, is a term when r is a dimension. The
operational semantics is defined on terms that are closed with respect to term variables but may
contain free dimension names.

Dimension names represent generic elements of an abstract interval whose end points are notated
0 and 1. While one may sensibly substitute any dimension for a dimension name, terms are not to
be understood solely in terms of their dimensionally-closed instances (namely, their end points).
Rather, a term’s dependence on dimension names is to be understood generically; geometrically,
one might imagine additional unnamed points in the interior of the abstract interval.

2.1 Terms

M = (a:A) — B| (a:A) x B | Pathy o(M, N) | Eq4(M, N) | void | nat | bool
| wbool | S' | UM | U™ | V,.(A, B, E) | Vin.(M, N) | Vproj,(M, F)
| Aa.M | app(M,N) | (M,N) | fst(M) | snd(M) | (x)M | MQr | x
| z| s(M) | natrec(M; Ni,n.a.Na) | true | false | ifp o(M; N1, N2)
| base | loop,. | S*-elim, 4 (M; Ny, z.Ny)

| coel " (M) | heom™y™" (Myrs = 1} < y.N;)

| coml " (M vy = 1} = y.Ny) | feom™ ™ (M 1y = 1} < y.N;)

| ghcomff’"/ (M;r; =7, < y.N;) | gcom;j{’/(M;ri =7, < y.N;)

| box™™" (M;r; = 1} < N;) | cap™™™ (M7 = 1) < y.B;)

We use capital letters like M, N, and A to denote terms, 7, r’, r; to denote dimensions, x to
denote dimension names, € to denote dimension constants (0 or 1), and  to denote the opposite
dimension constant of . We write z.— for dimension binders, a.— for term binders, and FD(M) for
the set of dimension names free in M. Additionally, in (a:A) — B and (a:A) X B, a is bound in B.
Dimension substitution M (r/z) and term substitution M[N/a| are defined in the usual way.

The final argument of most composition operators is a (possibly empty) list of triples (14,77, y.N;)
whose first two components are dimensions, and whose third is a term (in some cases, with a bound

dimension). We write r; = r} < y.N; to abbreviate such lists or transformations on such lists, and
& to abbreviate r; = 7, when their identity is irrelevant.

Definition 2. We write M tm [¥] when M is a term with no free term variables, and FD(M) C W.
(Similarly, we write M val [¥] when M tm [¥] and M val.)

Definition 3. A total dimension substitution 1 : ¥/ — W assigns to each dimension name in ¥
either 0, 1, or a dimension name in ¥’. It follows that if M tm [¥] then M1 tm [T'].



2.2 Operational semantics

The following describes a deterministic weak head reduction evaluation strategy for (term-)closed
terms in the form of a transition system with two judgments:

1. M val, stating that M is a value, or canonical form.
2. M —— M’, stating that M takes one step of evaluation to M.

These judgments are defined so that if M val, then M +/—, but the converse need not be the case.
As usual, we write M ——* M’ to mean that M transitions to M’ in zero or more steps. We say M
evaluates to V, written M |} V, when M ——* V and V val.

The — judgment satisfies two additional conditions. Determinacy implies that a term has
at most one value; dimension preservation states that evaluation does not introduce new (free)
dimension names.

Lemma 4 (Determinacy). If M — M; and M — My, then My = My.
Lemma 5 (Dimension preservation). If M —— M’', then FD(M') C FD(M).

Many rules below are annotated with G0. Those rules define an additional pair of judgments
M valg and M ——g M’ by replacing every occurrence of val (resp., —) in those rules with
valg (resp., —g). These rules define the cubically-stable values (resp., cubically-stable steps),
characterized by the following property:

Lemma 6 (Cubical stability). If M tm [¥], then for any ¢ : ¥/ — ¥,
1. if M valg then M) val, and
2. if M —g M’ then M+ — M.

Cubically-stable values and steps are significant because they are unaffected by the cubical
apparatus. All standard operational semantics rules are cubically-stable.

Types
———— P —— ¢ or P — i
(a:A) — B val (a:A) x B val Path, 4(M, N) val Equ (M, N) val
@ e S —, , —— e
void val nat val bool val wbool val S* val L{]'-’ val
e @ & o
U" val V.(A, B, E) val Vo(A,B,E)— A Vi(A,B,E)— B



Kan operations

Avr— A A A
yif] yif]

hcom’y™™ (M; & < y.N;) — hcom’s”" (M; & — y.N;) coe” (M) — coe;”;(; (M)

it

com;”;{/(M; & — y.N;) — hcom%@ﬁl/w(coe;j/ (M); & < y.coe " (N;))

r=r - r#r ri # 1) (Vi < j) =1
feom™" (M3 & — y.N;) — M feom™ " (M;r; = i — y.N;) — N;{r' Jy)
r#r ri # 1 (Vi) =
feom”™" (M;r; = r < y.N;) val ghcom’;™" (M;-) —» M

T. = hcomy*(M;s' = e — y.N, s’ =& < y.ghcom’,"Y(M; & — y.N;), §if—>y.Ni)@
ghcomrAWr (M;s =5 y.N,& < y.N;) —>

hcom’y™ (M;s =€ < 2.1.,s = s < y.N, & — y.N;)

i
gcom;”X/(M; & — y.N;) — ghcom’”A”{[,//w (coe;”;{,(M); & — y.coey }" (N;))
Dependent function types
M — M’
@ e — @
app(M, N) — app(M', N) app(Aa.M,N)— M[N/d] Aa.M val
/ ! @
hcom{ 4y, p(M; & = y.N;) — Aa.hcomp™ (app(M, a); & < y.app({Ni, a))
coe” " (M) — Aa.coe’™"" (app(M, coe’, 7" (a))) >
z.(a:A)=B "CO%, Bleoer' ;% (a) /a] V3PP

Dependent pair types

M — M’ M — M’
_ @1 — @ —— e
fst(M) — fst(M") snd(M) — snd(M") (M, N) val fst((M,N)) — M

snd((M, N)) — N @

F = hcom',"*(fst(M); & — y.fst(NN;))
hcom’(";};)xB(M;& — y.N;) —>
(hcom’;™" (fst(M); & < y.fst(NN;)), comgff;[}/a] (snd(M); & < y.snd(NN;)))

it
Coe;?z; A)xB (M) — <Coeg«74r (fSt(M)> Coe;M];s’?n[coerwgc(fst(M))/a] (Snd(M))>



Path types

M — M’
@ e — @
Ma@r — M'Qr ((x)M)Qr — M(r/x) (x)M val
oad JO / @
hcomp i (po, 1) (M5 & = y.N;) — (x)hcom’;™"

W(MQzyx = e — _P., & — y.N;Qx)

/ / @
o€y Bhth. (R, py) (M) — (z)comy 7y (MQz;z =& < y.Px)

Equality types

i
* val Tt

hcomeg gy i) (M5 & = y.Ni) — *

Natural numbers

M — M’
it , it
natrec(M; Z,n.a.S) — natrec(M'; Z, n.a.S)

it -
z val s(M) val

natrec(z; Z,n.a.S) — Z

natrec(s(M); Z,n.a.S) — S[M /n][natrec(M; Z,n.a.S)/al @

it

7 7 or
hcom; " (M; & — y.N;) —> M coel T (M) — M
Booleans
M— M
or
true val false val

sig] il
ifb,A(M;T, F) — ifb.A(M/;T, F)

ifpA(true; T, F) — T

. & ; & — i
ifp a(false; T, F) —> F° bool (M & — y.N;) — M coel ot (M) — M

z.bool

hcom

Weak booleans

! ! @
hcom| pao (M & — y.N;) — fecom”™" (M; & — y.N;)

r#r £ (Vi) H=feom™*(M;r; =1, < y.N;)

5 i
ifya(fcom”™ " (M;r; = 7} < y.N;); T, F) —» rwbool (M) — M

coe
com?atey sy (i A (M T, F)ri = 1 < yify a(Ni; T, F))




Circle

: @m @ — @ e
hcomfi™™ (M; & — y.N;) — feom™" (M; & — y.N;) loop, — base base val
M — M’ =
loop,, val St-elime 4 (M; P,z.L) — S'-elim, 4 (M'; P, x.L)
T e 1
S*-elim. 4(base; P, z.L) — P S*-elim. 4 (loop,,; P, z.L) — L{w/x)
r#r ri # i (Vi) F = fcom™*(M;r; = rl < y.N;) =

S'-elimg_a(fcom™ "™ (M;r; = 7, < y.N;); P, x.L) — Coez”éf (M) — M
com? 41 (S'-elime A (M; P,x.L);r; = 1§ < y.S'-elim. a(Nj; P,x.L))

Univalence

. , i , &
Ving (M, N) val Ving(M,N) — M Vini(M,N) — N

M — M’

- & - & - - 7
Vprojy(M, F) — app(F, M) Vproj, (M, F) — M Vproj,. (M, F) — Vproj, (M', F)

Vproj, (Ving(M,N),F) — N

O = hcom',"¥(M; & — y.N;)
T =z =0< y.app(fst(E),O),z = 1 < y.hcomz"¥(M; & — y.N;)
hcomgv*{;1 5.5y (M; & = y.N;) — R
Ving (O(r' /y), hcom’s™" (Vproj, (M, fst(E)); & — y.Vproj, (N;, fst(E)), T'))

coegf\}zl(A,B,E)(M) — Vin (M, coe? " (app(fst(E(0/z)), M)))

0 = fst(app(snd(E(r /), coel 3’ ()
P= hcom};&g/w (coeky (N);r' = 0 < y.snd(0)Qy, 7' = 1 — _coel 7' (N))

7 oo
coeglc.”\jz(A,B’E)(N) — Vin, (fst(O), P)

- = Viroj (065 .,y (V). (/)
P = com? " (Vproj, (M, fst(E(y/x)));y = € — w.OQ
N Qcla] = <C°ey A(0/$>( a), (2 >Cong%/x>(P<O/x><8/y>; U))

U=z=0< y.app(fst(F <O/x>),coezz%0/z>( a)),z=1<y.P{0/z)

R= ipp( pp(snd(app(snd(E(0/x)), P{0/x))), Qo[M{0/y)]), Q [(Coeiv\?g(ABE)( )(1/y)])@Qy
T =y=c< 0" Jw),y=1" _Vproj..(M,fst(E{r'/z))),r =0 z.snd(R)Qz
Cer?/Z/(A,B,E) (M) — Vin,.(fst(R), hcomlwg/x (P{r'/z); T))



z#y T—g= 0 — y.app(fst(E), coe; J(M)),z=1< y.coe;;y(]\/[)
COGZTC/Z/(A,B,E)(M) — Vinx(coeg’}TX'(M), comy 3 ’(Vprojx(M, fst(E(r/y))); T))

Universes
’ 4 = 7 @
hcom; o (M5 &; — y.N;) — fcom”™™" (M; §; — y.N;) coe;, u?:”w (M) — M
J
= o r#Er nAn(Yi<i) =1
box" " (M;& — N;) — M box " (M; 1y = 1 = Ni) — N;
r#r (v rer =
box™" (M1 = 1 — N;) val cap™ " (M;& < y.B;) — M
rAr nAn(i<y) =
cap“”"/(M; ri =1, < y.B;) — COGZI.VBZ-T(M)
r#r £ (Vi) M— M’
cap™ " (M;r; = rh < y.B;) — cap”™ " (M1 = 1 < y.By)
r#r o # g (Vi)
cap”™ " (box"™" (M; & — Ny)iri = rh < y.B;) — M
s#S s # s (9) Py = hoomp " (coel 5 (M);ri = 1 < y.coel 5 (Ny)

Flc] = hcom®,™"*(cap®*™* (¢; s5j = 85 < 2.Bj); 55 = 8 < 2'.coe. Es(coeigfl(c)))
O = heom ;™" ((F[M])(s/z); rs = r} < y-(F[Ni])(s/2))
Q = hcom¥™* (O;r; = 7, — 2. FIN:(r' Jy)], 55 =8 %zcoej}S(P)r—r — z.F[M])

hcom”™"" (M1 =71 < y.N;) — box®¥(Q; sj = 85— Pj(s'/z))

s~ 8! co.—g .
fcom (Assj=s)—z.Bj)

s#s si# s (Vi) Ni=coel 57 (coel iy (M)
O = (hcom’y™*(cap®™* (M; 5; = 5} — 2.By); s; = s} > z.coe 53 (N;))) (r /)
P = geom” 3 (O(s(r/a)/2);s; = s, < x. N-(s/z>|(x#s,.,5;), s =5 < x.coep }" (M)](aps,s))

QL = gcomiTBIfZ&>//x>(P si = s, = 2.N;(r ’/ac)\(z#si’s;),r =1 < 2.Np(r'/x))

/
coe”™" (M) —
x.fcom®% (A;s;=g,—2.B;)

(boxswsl(hcomsws (P;s; = s; < z.coe? B(Qi),r = ' 2.0);5 = s, = Qi(s'/2))(r' /x)




3 Cubical type systems

In this paper, we define the judgments of higher type theory relative to a cubical type system, a
family of relations over values in the previously-described programming language. In this section
we describe how to construct a particular cubical type system that will validate the rules given in
Section 6; this construction is based on similar constructions outlined by Allen [1987] and Harper
[1992].

Definition 7. A candidate cubical type system is a relation 7(W¥, Ay, By, @) over Ag val [¥], By val [V],
and binary relations ¢(My, Ny) over My val [¥] and Ny val [¥].

For any relation R with value arguments, we define RV as its evaluation lifting to terms. For
example, 7¥(¥, A, B, p) when there exist Ag and By such that A | Ay, B |} By, and 7(¥, Ag, By, ).

Definition 8. A W-relation is a family of binary relations ay, (M, N) indexed by substitutions
¢ U — U, relating M tm [¥'] and N tm [U']. (We will write a(M, N) in place of ajqg, (M, N).)
We are often interested in W-relations over values, which relate only values. If a WU-relation depends
only on the choice of ¥ and not ¢, we instead call it context-indezed and write cvg: (M, N).

We can precompose any W-relation « by a dimension substitution ¢ : ¥/ — ¥ to yield a
U'-relation (a))y (M, N) = ayyr (M, N). Context-indexed relations are indeed families of binary
relations indexed by contexts W', because the choice of ¥ and ¢ are irrelevant—every ¥, ¥’ have at
least one dimension substitution between them. We write R(¥’) for the context-indexed relation R
regarded as a ¥'-relation.

Definition 9. For any candidate cubical type system 7, the relation PTy(7)(¥, A, B, «) over
A tm [¥], B tm [¥], and a W-relation over values « holds if for all ¢ : ¥/ — ¥ we have
TlL(\I/’,Aw,Bw,ad,), and for all ¢; : V1 — ¥ and 9o : Vo — Wy, we have Ay || Ay, By, | Bi,
TH( o, Ayip, Ahitfa, ), 7 (W, Avprie, Ariha, @), TH(Wa, Bitye, Biniha, @), 74 (o, Bite, Biyha, ),
and TU(\IJQ, Alwg, Blwg, (p)

Definition 10. For any W-relation on values «, the relation Tm(a)(M,N) over M tm [¥] and
N tm [¥] holds if for all ¢y : U3 — ¥ and ¥ : Y9 — ¥y, we have Myy | My, N¢y |
N1, o)y (Mythy, Mipraa), aif  (Mpyabg, Myta), ayy o (N1too, Nntha), aif , (Ntb1t)2, Nitbp), and
Ay, g (M, Nithy).

Definition 11. A VU-relation on values « is value-coherent, or Coh(a), when for all ¢ : ¥/ — W if
CW,(MO, No) then Tm(oab)(Mo, No)

These relations are closed under dimension substitution by construction—for any 1 : ¥/ — W, if
PTy(7)(V, A, B, ) then PTy(7)(V’, Ay, B, o)), if Tm(a)(M, N) then Tm(atp)(M1), N1p), and if
Coh(«) then Coh(a)).

3.1 Fixed points

U-relations (and context-indexed relations) over values form a complete lattice when ordered by
inclusion. By the Knaster-Tarski fixed point theorem, any order-preserving operator F(z) on a
complete lattice has a least fixed point px.F(x) that is also its least pre-fixed point [Davey and
Priestley, 2002, 2.35].
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We define the canonical element equality relations of inductive types—N for natural numbers, B
for weak booleans, and C for the circle—as context-indexed relations (written here as three-place
relations) that are least fixed points of order-preserving operators:

N = pR.({(¥,2,2)} U{(¥,s(M),s(M)) | Tm(R(¥))(M, M)})
B = uR.({(¥, true, true), (U, false, false) } U FKAN(R))
C = pR.({(¥, base, base), (¥, z), loop,, loop, )} U FKAN(R))

where

FKAN(R) = {(¥, feom™" (M;r; = r} < y.N;), feom™" (M'; 7 = 1, < y.N})) |
(r#r") N Vi £ i) A (Fi, 5.(ri = r5) A (r; = 0) A (1“; =1)) ATm(R(¥))(M, M")
A (Vi, 3,0 O — (U, y).((rig = ri) A (rjp = r}zﬁ)) = Tm(R(¥)) (N, le-q/J))
A (Vi U = () = i) = Tm(R(Y))(Ni(r/y)v, Mb))})
The operators Tm and FKAN are order-preserving because they only use their argument relations
in positive positions.
Similarly, candidate cubical type systems form a complete lattice, and we define a sequence

of candidate cubical type systems as least fixed points of order-preserving operators, using the
following auxiliary definitions for each type former:

FuN(T) = {(¥, (a:A) — B, (a:A") — B, ) |
Ja, BT PTy(7)(W, A, A, o) A Coh(a)
A (Vab, M, M Tm (o)) (M, M') =
PTy(7) (¥, By[M/a], B'Y[M' [a], B*MM") A Coh(8¥M"))
A (o = {(Aa.N, Aa.N") | Vb, M, M’ . Tm(anp) (M, M') =
Tm(B*MM) (N [M/a], N'y[M [a])})}
PAIR(T) = {(¥, (a:A) x B, (a:A") x B, ) |
Ja, B PTy(7) (0, A, A, ) A Coh(a)
A (Y, M, M Tm (o)) (M, M) =
PTy(7) (¥, BY[M/a], B'Y[M’ [a], B¥MM) A Coh(8PMM))
A (o ={({M,N),(M',N")) | Tm(a))(M, M") A Tm(B9w-2M) (N, N")})}
PatH(7) = {(U, Path, (Py, P1), Pathy 4/ (P}, Pl), ¢) |
Ja.PTy(7) (¥, x), A, A, a) A Coh(a) A (Ve.Tm(ale/x))(Px, PE/))
A (o = {({x) M, (z)M") | Tm(a)(M, M) A (Ve. Tm(ale/x))(M(e/z), P:-))})}
EQ(7) = {(¥,Eqs(M,N),Eq (M',N'), ) |
Ja.PTy(7) (¥, A, A, a) A Coh(a) A Tm(a) (M, M’) A Tm(a)(N, N’)
A(p ={(x%) | Tm(a)(M,N)})}
V() = {((¥,2),Va(A, B, E), V. (A, B, E'), ¢) |
38,07 ) PTy(7) (¥, z), B, B, 8) A Coh(8)
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A (Y. (zp = 0) = PTy(7)(¥/, Ay, A", a¥) A Coh(a?)
A PTy(7)(¥', Equiv( A, By), Equiv(Ay, Bip),n%) A Tm(n¥)(Ev, E'))
A (= {(Ving (M, N), Ving (M', N")) | Tm(B8)(N, N') A (Vip.(z¢p = 0) =
Tm(a?) (M4, M'9) A Tm(B¢) (app(fst(Ev), M), N¢))}}
FcoM(r) = {(¥, fecom”™" (A;r; = 1 < y.B;), feom™ " (A'sr; = v} < y.BL), ) |
Ba, BT FE ') A (Viry #15) A (i, g (ri = 15) A () = 0) A (1 = 1))
APTy(7)(¥, A, A',a) A Coh(c)
A (Y, 3,00 2 W' = (0,y).((rip = 7i0) A (rjod = i) =
PTy(7)(¥', Bitp, Bjih, ) A Coh(5¥+7))
A (Vi . (rip = rigp) == PTy(T) (', Bi(r/y), A, )
A (o = {(box™" (M;r; = i — N;), box™" (M';r; = 7, < N})) | Tm(a)(M, M')
A (Vi 4, ((ritp = 750) A (rjep = b)) == Tm(BY (' /y)) (N, Njpb))
A (Vi . (ritp = i) = Tm(aw) (M, coe] 7Y (Niwh)) 1)}
Voip = {(¥, void, void, {})}
NaT = {(¥, nat, nat, Ny ) }
BooL = {(¥, bool, bool, {(true, true), (false, false) } )}
WB = {(¥, wbool,wbool, By)}
(
(
(

Circ = {(¥,S!, 8!, Cy)}
UPRE(v) = {(T, U}, U™, ) | V(WU U™, )}
UKAN(V) = { \I],quaanlean’SO) | V(\Ij7u]Kan7u]Kan7(p)}
In the V case, and for the remainder of this paper, we use the abbreviations
isContr(C) := C x ((c:C) — (:C) — Path_¢(c,c))
Equiv(4, B) := (f:A — B) x ((b:B) — isContr((a:A) x Path_g(app(f,a),b))).
For candidate cubical type systems v, o, 7, define
P(v,0,7) = FUN(7) U PAIR(T) U PATH(T) U EQ(7) U V(7) U FcoMm(o)
U VoIb U NaT U BooL U WB U Circ U UPRE(r) U UKAN(v)

K(v,0) = FuN(o) U PAIR(0) U PATH(0) U V(o) U Fcom(o)
U VoIib U NaT U BooL U WB U Circ U UKAN(v)

The operator P includes EQ and UPRE while K does not; furthermore, in P only FcoM varies in o.
The operators P and K are order-preserving in all arguments because PTy and each type operator
only use their argument in strictly positive positions.

Lemma 12. In any complete lattice,

1. If F(x) and G(z) are order-preserving and F(x) C G(z) for all z, then px.F(z) C ux.G(z).
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2. If F(z,y) and G(z,y) are order-preserving and F(x,y) C G(x,y) whenever x C y, then
py © pg where (g, pg) = (. y).(F(z,y), G(z, y)).

Proof. For part (1), pz.G(x) is a pre-fixed point of F' because F'(uz.G(x)) C G(ux.G(x)) = pzx.G(z).
But px.F(x) is the least such, so pz.F(x) C px.G(x).

For part (2), let pn = pgs N pg. Note (un, pg) is a pre-fixed point of (z,y) — (F(z,y),G(z,y))
because, by assumption and (pf,pg) being a fixed point, F(pn,png) € F(pf, pg) = pp and
F(pun, ng) € G(un, 1g) © G(pg, g) = pg. This implies (py, pg) € (1n, p1g) and thus py C pg. O
Lemma 13. Let uP®(v,0) = pur.P(v,0,7) and let pX*"(v) = po.K(v,0). Then pP®(v,0) and
K@ (V) are order-preserving and K" (v) C pPre(v, pfo" (v)) for all v.

Proof. Part (1) is immediate by part (1) of Lemma 12, because whenever v C v/ and o C o/,
P(v,0,—) C P(V',o',—) and K(v,—) C K(V',—). For part (2), a theorem of Beki¢ [1984] on
simultaneous fixed points implies (152" (v), uPe(v, uf2" (1)) = p(o, 7).(K (v, 0), P(v,0,7)). Because
each type operator is order-preserving, K(v,0) C P(v,o0,7) whenever o C 7. The result follows by
part (2) of Lemma 12. O

We mutually define three sequences of candidate cubical type systems: v; 41 containing ¢ universes,

Tiﬂel containing the pretypes in a system with ¢ universes, and Tllf:’l” containing the Kan types in a

system with ¢ universes:

vy =10
vn = {(0, U7 U, 0) | (7 <n) A (e ={(Ao, Bo) | 77 (¥, Ao, Bo,-)})}
T = 1P (v, 1" (V)

Vw = {(‘lj’um U"{vs@) | Y = {(Ao,Bo) | Tf(\I’,AO,BO,,)}}

Tpre — Mpre( MKan( ))
Kan _ 'UJKan( )

Observe that vy, C vy, vy C v, 7 C 1), T C T8, T,Pfa” C 7P and Tfa” C b

3.2 Cubical type systems

In the remainder of this paper, we consider only candidate cubical type systems satisfying a number
of additional conditions:

Definition 14. A cubical type system is a candidate cubical type system 7 satisfying:

Functionality. If (U, Ag, By, ) and 7(¥, Ag, By, ¢') then ¢ = ¢'.

Symmetry. If 7(¥, Ay, By,

( )

PER-valuation. If 7(U, Ay, By, ¢) then ¢ is symmetric and transitive.
( @) then 7(WU, By, Ay, ¢).
( )

Transitivity. If 7(V, Ao, By, ¢) and 7(¥, By, Co, ¢) then 7(¥, Ag, Co, ¢).
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Value-coherence. If (U, Ay, By, ¢) then PTy(7)(V, Ay, By, ) for some a.

If 7 is a cubical type system, then PTy(7) is functional, symmetric, transitive, and W-PER-valued
in the above senses. If a is a W-PER, then every at is a ¥-PER, and Tm(«) is a PER.

Lemma 15. If v,0 are cubical type systems, then pX"(v) and pP™(v, o) are cubical type systems.

Proof. Because the operators FUN, PAIR...are disjoint, we can check them individually in each
case. We describe the proof for ;P (v, o); the proof for ;%" (v) follows analogously.

1. Functionality.

Define a candidate cubical type system ® = {(U, Ay, By, ) | Vo' .uPe(v,0) (¥, Ag, By, ¢') =
(p = ¢')}. Let us show that ® is a pre-fixed point of P(v,0,—) (that is, P(v,o,®) C ®).
Because uP®(v,o0) is the least pre-fixed point, it will follow that pP(rv,0) C ®, and that
P (v, o) is functional.

Assume that FUuN(®)(V, (a:A) — B, (a:A’) — B',¢). Thus PTy(®)(¥, A, A, ), and in
particular, for all ¢ : W' — W, pP®(v, o)V (W', Ah, A", ') implies ay = ', s0 « is unique
in pP®(v,0) when it exists. Similarly, each $(—=7) is unique in pP*(r, o) when it exists.
The relation ¢ is determined uniquely by a and (7). Now let us show ®(¥, (a:4) —
B, (a:A") = B’', p), that is, assume pP*®(v,0)(V, (a:A) = B, (a:A’) — B, ¢') and show ¢ = ¢'.
It follows that PTy(uP™(v,0))(¥, A, A’, o) for some o/, and similarly for some family 4’, but
a =« and each 8 = /. Because ¢’ is defined using the same o and 8(—7) as ¢, we conclude
¢ = ¢'. Other cases are similar; for FcoMm, UPRE, UKAN we use that v, o are functional.

2. PER-valuation.

Define ® = {(V, Ay, By, ) | ¢ is a PER}, and show that ® is a pre-fixed point of P(v, o, —).

It follows that uP*®(v, o) is PER-valued, by pP*(v, o) C ®.

Assume that FUN(®)(U, (a:4) — B,(a:A’) — B',¢). Then PTy(®)(¥, A, A, a), and in

particular, for all ¢ : ¥/ — U, &¥(V' Ay, A", o), so each ay is a PER. Similarly, each
VMM ig a PER. Now we must show O(V, (a:A) — B, (a:A") — B', ). The relation ¢ is

a PER because Tm(at)) and Tm(8¥MM') are PERs, because ay and ﬁz,’M’M/ are PERs.
Most cases proceed in this fashion. For NAT, WB, and CIRC we show that N, B, and C are
symmetric and transitive at each dimension (employing the same strategy as in parts (3—4));
for FcoM, UPRE, UKAN we use that o, v are PER-valued.

3. Symmetry.

Define ® = {(U, Ay, By, ¢) | uP®(v,0)(¥, By, Ao, p)}. Let us show that & is a pre-fixed point
of P(v,0,—). It will follow that uP®(v, o) is symmetric, by pP¢(v,0) C ®.

Assume that FUN(®)(V, (a:A) — B, (a:A’) — B’,p). Then PTy(®)(¥, A, A, a) and Coh(«),
and thus pPe(v, o) (W, A, A, ), Ay | Ay, Ay | AL, and pPe(v,0)¥(Wg, —, —, @)
relates (AY192, A11a), (A1ta, A11a), (A'h1te, Altpe), (Altbe, AY1ah2), and (Alvs, A1es).
Similar facts hold by virtue of PTy(®)(¥’, By)[M/a], B'1w[M' /a], MM") and Coh(s¥M-M").
We must show ®(U, (a:4) — B, (a:A") — B', ), that is, uP*(v,0) (¥, (a:A") — B, (a:A) —
B, ). This requires PTy(uP"®(v,0))(¥, A, A, a) and Coh(«), which follows from the above
facts; and also PTy(uP™(v, 0)) (¥, B'y[M/a), B[ M’ /a], BHMM") and Coh(B¥MM") whenever
Tm(ay)(M, M'), which follows from the symmetry of Tm(at)) (since each ay; is a PER, by
(2)), and the above facts. Other cases are similar; for FCOM we use that ¢ is symmetric.
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4. Transitivity.

Define ® = {(U, Ay, By, ¢) | VCo.uP"(v,0) (¥, By, Co, ) = pP(v,0)(¥, Ao, Co,¢)}. Let
us show that ® is a pre-fixed point of P(v, o, —). It will follow that uP®(v, o) is transitive, by
pPre(v, o) C ®.

Assume that FUN(®) (¥, (a:A) — B, (a:A’) — B’, ). Then PTy(®)(¥, A, A’, o), and thus if
pPe(v, o) (W, A, Co, auy) then pPe(v, o) (W, Ay, Co, ay). Furthermore, Ay || Ay, A’y |
A}, and for any Cp, pP(v,0)¥(¥q, —, —, @) relates (Av1ihe, Co) if and only if (A1ee, Co);
(A1), Cp) if and only if (A]1e, Cp); and if (A)a, Cp) then (Ajtha, Cp). Similar facts hold
by virtue of PTy(®)(¥, By)[M/a), B'y[M' /a], MM,

Now we must show ®(V,(a:A) — B,(a:A’) — B',p), that is, if pP(v,0)(¥, (a:A") —
B’,Cy, ) then uP(v,0)(¥, (a:A) — B, Cy, ). By inspecting P, we see this is only possible
if Cp = (a:A”) — B”, in which case pP®(v,0)(V, (a:A") — B',(a:A") — B”,¢). Thus
we have PTy(uP®(v,0))(¥, A", A” ') and Coh(c'), so uP*(v, O')u(\I’,,A,’QZJ,AN¢,Oé2p), and by
hypothesis, 1P (v, o) (W', Ay, A", ayy) and Coh(ar). We already know Awy | Ay, A"y | AY,
and that pPe(v,0)% (U, —, —, ) relates (A"i1109, Af1b) and vice versa. By (Aj)a, Af1)o)
and the above, we have (A11a, A{1)2). Finally, by (A'¢11a, Aj1p2) and transitivity we have
(Al1ba, Aj1ba), hence by transitivity and symmetry (A9, A11)2), and again by transitivity
(A1pa, A112); as needed, (Aj1te, Aptb2) and vice versa follow by transitivity. As before,
PTy(uP(v,0)) (¥, BY[M/a], B"y[M’ /a], B¥"MM") and Coh(5¥"MM") when Tm(an))(M, M')
follows by transitivity of Tm(at) (since each oy is a PER, by (2)). Other cases are similar;
for FcoM we use that o is transitive.

5. Value-coherence.

Define ® = {(¥, Ay, By, ¢) | PTy(uP(v,0))(¥, Ay, By, «)}. Let us show that & is a pre-fixed
point of P(v, 0, —). The property P(v, o, ®) C ® holds trivially for base types VOID, NAT.. . as
well as universes UPRE and UKAN; we check FUN (PAIR, PATH, and EQ are similar) and V
(FcoM is similar). It will follow that pP™(v, o) is value-coherent, by uP(v,0) C ®.

Assume that Fun(®)(¥, (a:A) — B,(a:A’) — B’ ). Then by PTy(®)(¥, A, A’ a) and
Coh(a), we have ®V (W', Ay, A", ay), Aspy |} Ar, Alpy b AL, @Y (Do, Arepa, Ahiha, '), and
so forth. Note that for values Ag, By, if PTy(7)(¥, Ay, By, ) then 7(¥, Ay, By, ttig,,) by
definition. Therefore pP®(v, )% (W', A, A", ay), and so forth. We get similar facts for each
Tm(aah)(M, M') by PTy(®)(¥’, By)[M/a], BY[M'/a], 52MM') and Coh(5¥"MM"). We must
show (¥, (a:A) — B, (a:A") — B',¢’), that is, PTy(uP"®(v, 0))(V, (a:A) — B, (a:A’) — B, 7).
We know (a:A) — B valg, and by the above, PTy(uP®(v,0))(V, A, A’, ), Coh(a), and when
Tm(awp) (M, M"), PTy(pPe(v, 0)) (W', By[M/a], B'y[M' /a], YMM') and Coh(BY"M-M"). The
result holds because PTy, Tm, and Coh are closed under dimension substitution.

The V case is mostly similar, but not all instances of V,(A, B, E) have the same head con-
structor. Repeating the previous argument, by V(®)(V,V,(A, B, E),V.(A’, B',E")) we have
that PTy(uP(v,0))(¥, B, B', 8) and for all 1 with x1) = 0, PTy(uP™(v, 0))(V', Ay, A'h, a¥).
However, in order to prove PTy(uP"(v,0))(¥,V.(A, B,E),V. (A", B, E')), we must observe
that when ¢ = 0, Vo(Avy, By, Ev) — Atp; when ¢ = 1, V1(Av, By, Ev) — B1); and for
every 11,1y the appropriate relations hold in pP™(v, o). See Rule 46 for the full proof, and
Lemma 57 for the corresponding proof for Fcom. O

Theorem 16. 77 and 75 are cubical type systems.
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Proof.

System 77. Use strong induction on n. Clearly vy is a cubical type system; by Lemma 15 so

are 75" and thus 75'¢. Suppose ;" are cubical type systems for j <n. Then v, is a cubical type
system: functionality, symmetry, transitivity, and value-coherence are immediate; PER-valuation

follows from the previous 7']’-“‘ being cubical type systems. The induction step follows by Lemma 15.

System 7. Because each 77 is a cubical type system, so is v, (as before), and so are 7. ]

The cubical type systems employed by Angiuli and Harper [2016] are equivalent to candidate
cubical type systems satisfying conditions (1-4): define Ay ~¥ By to hold when (¥, Ag, By, ©),
and My %%’0 No when ¢(My, Np). Condition (5) is needed in the construction of universes.
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4 Mathematical meaning explanations

In this section, we finally define the judgments of higher type theory as relations parametrized by a
choice of cubical type system 7. In these definitions we suppress dependency on 7, but we will write
7 = J [¥] to make the choice of T explicit.

The presuppositions of a judgment are facts that must be true before one can even sensibly
state that judgment. For example, in Definition 18 below, we presuppose that A is a pretype when
defining what it means to be equal elements of A; if we do not know A to be a pretype, [A] has no
meaning. In every judgment J [¥] we will presuppose that the free dimensions of all terms are
contained in W.

4.1 Judgments

Definition 17. The judgment A= B type,. [¥] holds when PTy(7)(¥, A4, B, a) and Coh(c). When-
ever PTy(7)(¥, A, B, a) the choice of « is unique and independent of B, so we notate it [A].

Definition 18. The judgment M = N € A [¥] holds, presupposing A = A type,, [V], when
Tm([A])(M, N).

If A and B have no free dimensions and A = B type, [¥], then for any ¥/, W' A, B, [A])
and [A] is context-indexed; if M, N, and A have no free dimensions and M =N € A [V], then
([AJ(¥")¥ (M, N) for all ¥'. Therefore one can regard the ordinary meaning explanations as an
instance of these meaning explanations, in which all dependency on dimensions trivializes.

We are primarily interested in Kan types, pretypes equipped with Kan operations that implement
composition, inversion, etc., of cubes. These Kan operations are best specified using judgments
augmented by dimension context restrictions. We extend the prior judgments to restricted ones:

Definition 19. For any ¥ and set of unoriented equations = = (ri=7r,...,mp =1)) in ¥ (that is,
FD(7;, ri) C W), we say that ¢ : U — U satisfies = if r;¢) = ri1p for each i € [1,n].

Definition 20.

1. The judgment A= B type,,. [¥ | Z] holds, presupposing FD(Z) C ¥, when At)= B1) type,. [¥']
for every 1 : W' — W satisfying =.

2. The judgment M = N € A [V | Z] holds, presupposing A type,. [V | Z], when My = Ny €
At [V'] for every ¢ : W — WU satisfying =.

—_—\

Definition 21. A list of equations r; = r] is valid if either r; = r] for some i, or r; = rj, 7, = 0,
and 7} = 1 for some 4, j.

Definition 22. The judgment A = B typey,, [¥] holds, presupposing A = B type,,. [V], when the
following Kan conditions hold for any 1 : ¥/ — W:

1. If

—_\

(a) r; = r} is valid,

(b) M =M'e Ay [¥'],

¢) Ni=Nle Ay ¥,y |r; =r],r; =r}] for any i, j, and
j 1] 7
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(d) Ni(r/y) =M € Ay [V’ | r; = r}] for any 1,

then

(a) hcom’y” (M;r; =} < y.Ny) = hcomly)” (M';r; = v — y.N}) € Ay [¥'];

(b) if r = »' then hcomzzr(M; ri =r; = y.N;j) =M € Ay [¥']; and

(c) if r; = r} then hcomx/j’”/ (M;ri =rl — y.N;) = N;(r' Jy) € Ay [V'].
2. W' = (V" z) and M = M' € Ay(r/z) [¥"], then

(a) coely (M) = coel 7 (M) € Ap(r' /x) [¥"]; and
(b) if =1’ then coe] ), (M) = M € Ay(r/z) [V"].
We extend the closed judgments to open terms by functionality, that is, an open pretype (resp.,
element of a pretype) is an open term that sends equal elements of the pretypes in the context to

equal closed pretypes (resp., elements). The open judgments are defined simultaneously, stratified
by the length of the context. (We assume the variables ay, ..., a, in a context are distinct.)

Definition 23. We say (a; : A1,...,a,: 4,) ctx [¥] when

Al typepre [\Ij]a
ay: Ay > As typeye [V, ...
and a1 A1, ... an-1: Ap1 > Ap typeg,. [P].

Definition 24. We say ay: A1,...,a,: Ay > B = B’ type,,. [V], presupposing
(a1:A1,...,an: Ay) ctx [P], when for any ¢ : ¥/ — ¥ and any

N1 =Nj € Ay [P],
Ny = Nj € Asyp[N1/aq] [W],. ..
and N, = N, € A,¥[N1, ..., Ny_1/ay, ..., a,] [¥'],

BY[Ny,...,Npjax,...,an] = B'Y[N{, ..., Ny /a1, ... an] typeye [P'].
Definition 25. We say a; : A1,...,a,: Ay, > M = M' € B [V], presupposing
ar: Ax,...,an 0 Ay > B typeye [¥], when for any ¢ : ¥/ — ¥ and any
Ni = Nj € Ay [¥],
Ny = N3 € Agyp[N1/aq] [¥'), ...
and N, = N], € A,¥[N1, ..., Ny_1/ay,...,a,] [¥'],
Muy[Ny, ..., Npjaq, ... ,a,) = M'Y[NY,...,N}/ai,...,a,] € BY[Ny,...,Np/aq,...,a,] [¥].

One should read [¥] as extending across the entire judgment, as it specifies the starting dimension
at which to consider not only B and M but I' as well. The open judgments, like the closed judgments,
are symmetric and transitive. In particular, if I' > B = B’ type,. [V] then I' > B type,. [¥].
As a result, the earlier hypotheses of each definition ensure that later hypotheses are sensible; for
example, (ay: Ay, ..., a,: Ay) ctx [U] and Ny € A9y [¥] ensure that Aap[N1/a1] typeye [9'].
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Definition 26. We say a; : A1,...,a,: Ay, > B = B’ typek,, [V], presupposing
ar: Aq,...,an: Ay > B = B typeg, [P], when for any ¢ : U/ — ¥ and any

Ny = Nj € Ay [¥],
Ny = Ny € Agp[N1/aq] [¥'],. ..
and N, = N], € A,¥[Ny, ..., Ny_1/ay, ..., a,] [¥'],

we have BY[Ny,...,Ny/a1,...,a,] = BY[N{,...,N} /ai,...,an] typekan [¥'].

Finally, the open judgments can also be augmented by context restrictions. In order to make
sense of Definition 27, the presuppositions of the open judgments require them to be closed under
dimension substitution, which we will prove in Lemma 28.

Definition 27.

1. The judgment I" ctx [¥ | =] holds, presupposing FD(Z) C ¥, when I'Yp ctx [¥'] for every
1 U — U satisfying Z.

2. The judgment T' > B = B’ type,, [V | E] holds, presupposing T' ctx [¥ | Z], when Ty >
By = B’y typeye [¥'] for every ¢ : W' — W satisfying =.

3. The judgment I' > M = M’ € B [¥ | E] holds, presupposing I' ctx [¥ | E] and T' >
B typeye [V | E], when I'p > M1 = M'yp € By [U'] for every ) : W' — VU satisfying =.

4. The judgment T' > B = B’ typex,, [V | Z] holds, presupposing I" ctx [¥ | Z], when T'tp >
Bv = B’y typega, [V'] for every ¢ : W/ — W satisfying =.

4.2 Structural properties

Every judgment is closed under dimension substitution.
Lemma 28. For any ¢ : V' — U,
1. if A= B typey. [¥] then Ay = By type,. [V'];
if M =N € A [V] then M1 = N1 € Ay [V'];
if A= B typexa, [¥] then Ay = By typega, [¥'];
if T ctx [U] then Ty ctx [¥'];
if T'> A= B typey. [V] then 'Y > Ay = By type,, [V'];

ifT'>M=N € A V] then Ty > My = Nt € Ay [V']; and

XN S &t o e

if ' > A = B typeka, [¥] then T'p > Ay = By typexa, [V'].

Proof. For proposition (1), by PTy(7)(¥, A, B, a) we have PTy(7)(V’, A, By, arp). We must show
for all ¢/ : ¥ — W that (o)) (Mo, No) implies Tm(awpr)’)(Mo, No); this follows from value-
coherence of a at 11)’. Propositions (2) and (3) follow from [Avy] = [A]¢ and closure of Tm and
the Kan conditions under dimension substitution.
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Propositions (4), (5), and (6) are proven simultaneously by induction on the length of I'. If I = -,
then (4) is trivial, and (5) and (6) follow because the closed judgments are closed under dimension
substitution. The induction steps for all three use all three induction hypotheses. Proposition (7)
follows similarly. 0

Lemma 29. For any ¢ : ¥ — W, if J [V | Z] then J¢ [V | Z4).

Proof. We know that Jv [¥'] for any ¢ : ¥/ — W satisfying =, and want to show that Jy' [P
for any v : W/ — W@ and ¢/ : ¥/ — ¥’ satisfying Zv. It suffices to show that if 1)’ satisfies =), then
Y1)’ satisfies =. But these both hold if and only if for each (r; = 7}) € E, ryy)’ = ripy’. O

Remark 30. The context-restricted judgments can be thought of as merely a notational device,
because it is possible to systematically translate J [¥ | Z] into ordinary judgments by case analysis:

1. All ¢ satisfy an empty set of equations, so J [¥ | -] if and only if Jv [¥’] for all ¢, which by
Lemma 28 holds if and only if J [¥].

2. A ¢ satisfies (2,7 = r) if and only if it satisfies =, so J [¥ | E,r = r] if and only if J [¥ | E].
3. No ¢ satisfies (2,0 =1), so J [V | E,0 = 1] always.
4. By Lemma 29, J [V,z | E,z = r] if and only if J(r/z) [¥ | Z(r/z),r = r], which holds if and
only if J(r/x) [V | E(r/z)].
The open judgments satisfy the structural rules of type theory, like hypothesis and weakening.
Lemma 31 (Hypothesis). If (T, a; : A;, I) ctx [¥] then T, a;: A;, T' > a; € A; [V].

Proof. We must show for any ¢ : ¢/ — ¥ and equal elements N1, N7, ..., Ny, N}, of the pretypes in
(T, a; = Ainp, T74), that N; = N] € A;p [U']. But this is exactly our assumption about N;, N/. [

Lemma 32 (Weakening).

1. IfT\T" > B = B’ typeye [¥] and T > A typeye [V], then T'ya: A,T" > B = B’ type,. [V].

pre
2. IfT,I"> M =M' € B [¥] and I > A typeye [V], thenT,a: A,T" > M =M' ¢ B [¥].
Proof. For the first part, we must show for any v : ¥/ — ¥ and equal elements
Nl :N{ € A1¢ [\IJ,L
Na = Ny € Agp[N1/aq] [W],. ..

N =N € AY[Ny,... Jar,...] [¥],...
and N, = N/ € Ap[N1,...,N,....Ny_1/a1,...,a,...,a,] [V'],

that the corresponding instances of B, B’ are equal closed pretypes. By I', IV > B=B’ type,re (V] we

know that a#1I”, B, B'—since the contained pretypes become closed when substituting for ay, ..., a,.
It also gives us BY[Ny,... /a1,...]=B")[Ny,... /a1,...] type,, [¥'] which are the desired instances
of B, B’ because a # B, B’. The second part follows similarly. O

The definition of equal pretypes was chosen to ensure that equal pretypes have equal elements.
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Lemma 33. If A= B type,. [V] and M =N € A [V] then M =N € B [V].

pre
Proof. 1f PTy(7)(¥, A, B, ) then PTy(7)(V, B, A, «); the result follows by [A] = [B]. O

Lemma 34. IfT'> A= B type,, [V] and' > M =N € A [V] thenT > M =N € B [¥].

pre

Proof. T = (a1 : A1,...,a,: Ay) then I'> M = N € A [¥] means that for any ¢ : ¥ — ¥ and
equal elements Ny, Ni,..., Ny, N/} of the pretypes in I'yh, the corresponding instances of M and N
are equal in AY[Ny,..., Ny/ai,...,a,]. But I'> A= B type,. [V] implies this pretype is equal to
BY[Ni,...,Ny/a1,...,ay], so the result follows by Lemma 33. O

4.3 Basic lemmas

The definition of PTy(7)(¥, A, B, ) can be simplified when 7 is a cubical type system: it suffices
to check for all ¢1 : \I/1 — ¥ and 1/}2 : \:[12 — \Ifl that A’(/)l U« Al, B’Lﬂl U Bl, TU(\IIQ,Ale,Awle,SO>,
T (Wy, Bithg, Bi1)a, ¢'), and 7% (Wy, A1thg, B1aha, ¢"). Then ¢ = ¢/ = ¢ and « exists uniquely.
The proof uses the observation that the following permissive form of transitivity holds for any
functional PER R: if R(¥, A, B,«) and R(V, B,C, ) then R(V, A,C,«) and a = f3.

Lemma 35. If PTy(7)(V, A, A, a), then A} Ay and PTy(7)(¥, A, Ay, a).

Proof. Check for all ¢y : ¥ — V¥ and vy : ¥y — W; that TU(\IIQ,A"L/leQ,Ao'lpl’L/JQ,QO) and
TH( Wy, Ayipg, Altba, ') where Ay || Ay and Agyy | A]. The former holds by PTy(7)(¥, A, A, a)
at the substitutions idy and 119. For the latter, PTy(7)(¥, A, A, «) at v1,idy, proves that
(W, Ay, Ay, ) and at idy, b1 proves 7H(Wy, Agypy, Ay, ). By transitivity, 7(¥y, A1, A}, ) so
PTy(7)(¥1, A1, A}, ) and thus 7% (Wy, Ajihe, Ajtba, ') as required. O

Lemma 36. If A type,. [V], then A | Ay and A= Ay type,,. [¥].

pre pre

Proof. By Lemma 35 we have PTy(7) (W, A, Ay, a); value-coherence follows by A type,. [¥]. O

pre
Lemma 37. If M € A [¥], N € A [¥], and [A]*(M,N), then M =N € A [¥].

Proof. We check for all ¥; : ¥7 — ¥ and vy : U9 — ¥y that [[AleQ(Mwl?ﬁ%N%wZ); the other
needed relations follow from M € A [¥] and N € A [¥]. By A type,. [¥], [A]*(M, N) implies
Tm([A])(Mo, No) where M | My and N | Ny, hence [A]}, , (Motriba, Nov1te). By M € A [¥]
we have [[AM1 vy (Moth1th2, M P112) and similarly for N, so the result follows by transitivity. O

Lemma 38. If M € A [V], then M | My and M = My € A [¥].

Proof. By M € A [¥], M || My and [A](Mo, Mo). By A typey. [¥], My € A [¥], so the result
follows by Lemma 37. O

Lemma 39. If A typex,, [V], B typeka, [¥], and for all ¢ : V' — ¥, Ay, = By, typex,, [V'] where
Ay | Ay and By || By, then A= B typeg,, [¥].

Proof. By Lemma 36 we have At = Ay typeye [¥'] and By = By, type,, [W'] for all ¢ : ¥/ — W;
thus Ay = Bt type,,. [¥'] for all ¢ : ¥/ — ¥ and it suffices to establish that if

—_\

_ / . .
1. r; = r; is valid,

pre
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2. M =M € A [V],

3. Ni=Nj e Ap [V, y | r; =r},r; =rj] for any i, j, and

4. Ni(r/y)y =M € Ay [V | r; = r}] for any 1,

then hcomzzr/(M; ri =71 = y.N;) = hcomngr/ (M';ri =7} — y.N!) € Ay [¥']. We already know
both terms are elements of this type (by Definition 22 and Ay = B1) type, [¥']), so by Lemma 37 it
suffices to check that these terms are related by [Ay]V or equivalently [A,]%. This is true because
hcom 4y, +—* hcomy,,, hcompy, —* hcomp, , and by Ay = By, typek,, [V'] and Ay = Ay, type, [9'],
hcoma, =hcomp, € Ay [¥']. The remaining hcom equations of Definition 22 follow by transitivity
and Ay typeka, [¥']; the coe equations follow by a similar argument. O

In order to establish that a term is a pretype or element, one must frequently reason about the
evaluation behavior of its aspects. When all aspects compute in lockstep, a head expansion lemma
applies; otherwise one must appeal to its generalization, coherent expansion:

Lemma 40. Assume we have A tm [V] and a family of terms {Al\i],}w:qﬂ_ﬂp such that for all
W =W, AY = (AL )0 typeye (U] and Ay —* AY'. Then A= A% typeye [V].

Proof. We must show that for any ¢ : U1 — ¥ and ¢y : ¥y — Uy, Ay | Aq, (A;\Iéq,)lbl I A}, and
H(Wy, —, —, ) relates Aj¢a, Ath1ho, (A;\Iéq,)%%, and A}o.

1. Ay b Ay and 74 (Wg, A1ehg, Abriba, ).

We know Aty —s* A}le and Ai; type,e V1], so 74 ( Wy, A1ehy, (A}le)w, ¢) where Af;; U A

By Aill = (A;‘Ié\p)T/)l typeye [W1] under o and (A;Ié‘p)d)1¢2 = A:ijfw typeyre (W2, we have
(Ayh)s = AJ2, typeye [Wo] and thus 74(Wy, (A)1 )¢, A2, ,@). The result follows by

transitivity and Awyghy —* A2, .

2. TH( Wy, Apripa, (Aig, P12, ©).
By Ay2, = (A%, )11 typey, [Wa] we have (g, A2, |
by Aty —* A2, .
3. (A, v I AL and TH( Wy, (A, )¢1¢2, Alta, @),

Follows from Ai%'w typeyre [V]. O

pre

(Ai‘gql)@blwg, ¢'); the result follows

Lemma 41. Assume we have M tm [V], A type,. [V], and a family of terms {Mg,}w:\l//_)\lj such
that for all ¢ : W' — U, M} = (M3, ) € A¢ [¥] and Map —* M. Then M = MY € A [¥].

Proof. We must show that for any 7 : U1 — ¥ and 99 : Wo — Uy, My | My, (Mi\gq)% I My,
and [A]}, . relates Mg, Mup1ta, (MY, )ih11o, and M{ts.

1. My § My and [A]} , (Mg, Mipribo).

We know My —* M* and M* € Ay [U1], s0 [A]y . (Mygba, (M})¢b) where M 1} M.
By Mq\jjll = (Mg\l,)wl c AT/Jl [\Ifl] under ¢2 and (Mig\p)wlwg = M?\/i?'ll& S A1/111D2 [\112], we have
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(M g = M2, € Ayiby [Uo] and thus [A]y , ((M*)e, M2, ). The result follows by

transitivity and Mg —* M%QW.

2. [AL}, , (Mtniba, (M3, )1¢5n).

By M;I’fw2 i(M‘g\P)ﬂ)le € AY1)e [Uo] we have HAMWz (Mgf’w, (M;I’\P)wlwg); the result follows

by Mupygpy —* M2, .

3. (M3,)¥1 b M{ and [A]} , (M3, )1eba, Mits).
Follows from ]\/[Igw € AT O

Lemma 42. Assume we have A tm [V] and a family of terms {Ag/}w;\p/*}\p such that for all
YU — 0, A;zl;ﬂ = (Ai‘ﬂ’w)@b typeka, [¥'] and Ay —* Al‘i’/. Then A = Ai‘g\p typekan (Y]

Proof. By Lemma 40, A = Ai\g\p typeyre [V]; it suffices to establish the conditions in Definition 22.
First, assume ¢ : ¥/ — ¥,
1. r; = r} is valid,

2. M =M € Ay [¥],
3. Ni=Nje Ay [V, y | r; =r},r; =1} for any i, ], and

4. Ni(r/y) =M € Ay [V | r; = r]] for any 1,

and show that hcommf/(M;ri =71, = y.N;) = hcomzz\{/ W(M’;rl- =71, = y.N]) € Ay [¥']. We

idyy
apply Lemma 41 to hcomTA;ZT/(M; ri =r} < y.N;) and the family

{hcongfrlwl(Mw/; rit) = 1) — y-Nﬂ//)}g’"
!

at Ay typeye [VU]. We know hcom gy +——* hcom ,un by Ay —* AT‘%,, and hcom ,4» =
! Wi/

hcom qury,, € Ay [W"] by A, = (AY)Y typekan [¥"] and A}, = Ay typep,. [¥"] (both by

transitivity through (Ai\gw)ww/). We conclude that hcom 44 = hcom ;4 € At [¥'], and the desired
v

result follows by A:I;/ = (Ai\gq,)¢ typekan [¥']. The remaining hcom equations of Definition 22 follow

by transitivity and Ai‘g\p typexan (Y]

Next, assuming ¢ : (¥, 2) — ¥ and M = M’ € Ay(r/z) [¥'], show that coe;j{;jl)(M) =
coe;”(jggww(M/) € Ay(r'/z) [¥']. We apply Lemma 41 to coe ", (M) and {coe;‘.bAgi’llﬂ (Mw/)}f/j/
at Ay(r'/x) typeye [V'], using the same argument as before; we conclude that coe, ay = coe_ ,ur €

A
Ap(r'/x) [¥’], and the desired result follows by Al‘i’, = (A;\Iéq,)w typekan [/, x]. The remaining coe
equation of Definition 22 follows by transitivity and Ai‘gq/ typekan [¥]- O

Lemma 43 (Head expansion).

1. If A" typeye [¥] and Av—iy A', then A= A type,. [V].
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2. If M" € A V] and M % M', then M = M' € A [¥].
3. If A" typeyan (W] and A —5 A', then A=A’ typey,, [V].
Proof.
1. By Lemma 40 with A:})’, = A4, because Ay —* Atp and A" typey, [W'] for all ¢

2. By Lemma 41 with MY = M'y), because M) —s* M'vp and M'yp € Ayp [¥'] for all .

3. By Lemma 42 with AY = A4, because Ay —* A'p and A"y typey.,, [P'] for all v O

The hcom operation implements homogeneous composition, in the sense that A must be de-
generate in the bound direction of the tubes. We can obtain heterogeneous composition, com, by
combining hcom and coe.

Theorem 44. If A= B typexa., [¥, ],

_ N\

1. r; =1} is valid,
2. M =M e A(r/y) [¥],
8 Ni=N;e AW, y|r=r

ri,mj =13] for any i,j, and

4. Ni(r/y) =M € A(r/y) [V | ri = rj] for any i,

1. com”;( (M;r; =71 = y.N;) = com;%” (M'";riy =1, — y.N]) € A(r'/y) [¥];

2. if r=1" then comy "\ (M;r; = ri = y.N;) = M € A(r/y) [V]; and

3. if r; =1} then comr“”’ (M;ri =rl = y.N;) = N;(r'Jy) € A(r'Jy) [¥].
Proof. For all ¢ : ¥/ — (\I/ y) satisfying r; = 7} and r; = 1}, we know N;jih = Njtp € Az/J [P7].
By Definition 22, (coey”;f (N:)yp = (coezvg’ (N € A{r' Jy)ib [ '], and therefore coe} (NZ)

coe‘Z;T (N]) € AW,y |r; =r},r; =r;]. By a similar argument we conclude (coeyzr ( Z))(7“/ )=

coer“;{ (M) e A(r'Jy) [V | r; = rl], and by Definition 22 directly, coe;_“;{ (M) = coegg’" (M) €
Alr g /y) [¥]. By Definition 22 we conclude
hcomz”{r’;l/w (coeng/(M); =1, < y.cer}T,(Ni))
= hcomlg;,) ,/y> (coey (MY =1 y.cer}T/(N{)) e A(r' Jy) [V].
Result (1) follows by Lemma 43 on each side.
Result (2) follows by Lemma 43 and, by Definition 22 twice,
heom’y ;7 (coe) 3™ (M): i = rf < y.coel 3 (N0)) = M € A fy) [¥].
Result (3) follows by Lemma 43 and, by Definition 22 twice,
heom'sy (coel 4 (M):ri = vt = y.coel 3" (N) = Nulr'/y) € Alr'fy) [¥]. s
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5 Types

In Section 3 we defined two sequences of cubical type systems, and in Section 4 we defined the
judgments of higher type theory relative to any cubical type system. In this section we will prove
that 75" validates certain rules, summarized in part in Section 6. For non-universe connectives, we
in fact prove that the rules hold in every 77 and 7.

5.1 Dependent function types

Let 7 = %" (v) or pP®(v, o) for any cubical type systems v, o; in 7, whenever A = A’ typepre [V],
a:A> B=D'type,. [¥], and ¢ = {(Aa.N, Aa.N') | a:A> N=N' € B [¥]}, we have 7(¥, (a:4) —
B, (a:A") — B',¢). Notice that whenever A = A’ type,. [¥] and a: A > B = B’ type,. [¥], we
have PTy(7)(V, (a:A) — B, (a:A’) — B’,_) because (a:A) — B valg and judgments are preserved
by dimension substitution.

Lemma 45. Ifa: A> M =M’ € B [V] then Tm([(a:A) — B])(Aa.M,  a.M').

Proof. By Aa.M valg, it suffices to check that [(a:A) — By (Aa. M1, Aa.M'y) for any ¢ : ¥/ — ¥;
this holds because a : Ay > M = M'+p € By [¥'] and [(a:A) — By = [(a:Av) — By]. O

Rule 1 (Pretype formation). If A = A’ type
B = (a:A") — B’ type,. [V].

[¥] and a: A > B =B’ type,. [V] then (a:A) —

pre pre

pre

Proof. We have PTy(7)(V, (a:A) — B, (a:A") — B’,a), and by Lemma 45, Coh(«). O
Rule 2 (Introduction). If a: A> M = M' € B [¥] then Aa.M = Xa.M’' € (a:A) — B [¥].
Proof. Immediate by Lemma 45 and Rule 1. O

Lemma 46. If M € (a:A) — B [V] and N € A [¥] then M |} Aa.O and app(M,N) = O[N/a| €
B[N/a] [¥].

Proof. For any 1 : U/ — ¥, we know that M1 || Aa.Oy and [(a:A) = B]y(Aa.Oig, ¥, Aa.Oy),
and therefore a : Ay > Oig, 1) = Oy € By [U']. We apply coherent expansion to app(M, N)
BIN/a] typeye [¥], and {Oy[Nv/a]}y’, by app(Mp, Nyp) —* app(Aa.Oy, N¢p) — Oy[Nv/d]
and Oy[Nv/a] = (Oiqy [N/a])y € By [N /a] [¥']. We conclude by Lemma 41 that app(M, N) =
Oidy[N/a] € B[N/a] [V], as desired. O

il

Rule 3 (Elimination). If M = M’ € (a:A) — B [¥] and N = N' € A [V] then app(M,N) =
app(M', N') € B[N/a] [¥].

Proof. By Lemma 46 we know M | Xa.O, M" | Xa.O', app(M,N) = O[N/a] € B[N/a] [¥],
and app(M',N') = O'[N'/a] € B[N'/a] [¥]. By Lemma 38, M = Xa.O € (a:A) — B [¥] and
M’ = Xa.0'" € (a:A) — B [¥], and so by [(a:A) = B](Aa.O,Xa.0"),a: A> O =0"€ B [¥]. We
conclude O[N/a] = O'[N'/a] € B[N/a] [¥] and B[N/a] = B[N'/a] type,. [¥], and the result follows
by symmetry, transitivity, and Lemma 33. O

Rule 4 (Eta). If M € (a:A) — B [V] then M = \a.app(M,a) € (a:A) — B [¥].
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Proof. By Lemma 38, M | Aa.O and M = Xa.O € (a:A) — B [V]; by transitivity and Rule 2 it
suffices to show a: A > O = app(M,a) € B [V], that is, for any ¢ : ¥/ — U and N =N’ € Ay [¥'],
OY[N/a]=app(M,N') € By)[N/a| [¥']. By Lemma 46, Oy[N'/a] =app(M1, N') € By[N'/a] [¥],
where M |} Xa.Oy. The result then follows by By[N/a] = By[N'/a] type,. [¥'] and a: Ay >
Oidy ¥ = Oy, € By [V'], the latter by [(a:A) = Bly(Aa.O9, Xa.Oy). O

Rule 5 (Computation). Ifa: A > M € B [V] and N € A [V] then app(Aa.M,N) = M[N/a] €
B[N/a] [V].

Proof. Immediate by M[N/a] € B[N/a] [V], app(Aa.M, N) —m M[N/a], and Lemma 43. O

Rule 6 (Kan type formation). If A = A’ typex., V] and a: A > B = B’ typek., [¥] then
(a:A) = B = (a:A") — B’ typeka, [V].

Proof. By Rule 1, it suffices to check the five Kan conditions.
(hcom) First, suppose that ¢ : ¥/ — ¥,
1. & =r; =7, is valid,
2. M =M € (a:Ay) — By [¥'],

3. Ni=Nj € (a:AY) — By [V, y [ r; =rj,r; = r}] for any i, j, and

W

. Ni(r/y) =M € (a:Ay) — By [V | r; = r}] for any 1,
and show hcom’(”;gip)%Bw(M; & = y.N;) = hcomfgfgl,w)ﬁB,zp(M’;fi — N/) € (a:Ay) — By [¥']. By
Lemma 43 on both sides and Rule 2, it suffices to show

a: A)p > hcom" (app(M, a); & — y.app(Ni, a))
= hcom’y)) (app(M’, a); & < y.app(NV,a)) € By [W]

or that for any ¢’ : ¥ — ¥ and N = N’ € Ay’ [V"],

hcomi! "7 % o) (aPP(MY', N); &) — y.app(Ni/, N))

= heom’ 10, o (app(M'¥, N'); &3 — y.app(N{v/, N')) € By/[N/a] [¥"].

By a: A > B= DB’ type,, [¥] we know Byy'[N/a] = B'{y'[N'/a] typekan [¥”], so the result follows
by Definition 22 once we establish

1. 7 = 1}y is valid,

2. app(My',N) =app(M'y’,N') € Byy/[N/a] [¥"],

3. app(Niy)', N) = app(Njy', N') € BYy/[N/a] [¥",y | rig)" = rig)’, vy = r¢)’] for any 4, j, and
4. app(Ni(r/y)¢’, N) = app(My', N') € BYy'[N/a] [¥" | rit)" = riy)’] for any i.
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These follow from our hypotheses and a context-restricted variant of Rule 3, namely that if
M=M'e€ (a:A) — B[V |E]and N=N' € A [¥ | Z] then app(M, N)=app(M',N’) € B[N/a] [V | E].
(This statement is easily proven by expanding the definition of context-restricted judgments.)

Next, we must show that if » =’ then hcom@fg/w)_}Bw(M; & = y.N)=M € (a:Av) — By [V'].
By Lemma 43 on the left and Rule 4 on the right, it suffices to show that

)\a.hcomrwr (app(M, a); & < y.app(N;, a)) = Aa.app(M, a) € (a:Ay) — By [¥].

By Rule 2, we show that for any ¢/ : ¥/ — W' and N = N’ € Ay’ [¥”],

hcom' 1 (app(M/, N); €)' < y.app(Nitt', N)) = app(My', N') € By [N/a] [,

By By)'[N/a] typeka, [¥”] and r = 7’ on the left, it suffices to show app(My', N)=app(My', N') €
Byn)'[N/a] [¥"], which holds by Rule 3.

For the final hcom property, show that if r; = 7/ then hcom?gfgzﬂ)_)Blﬁ(M; & — y.N)=N;(r' Jy) €
(a:Avp) — Bip [P']. As before, by Lemma 43 on the left, Rule 4 on the right, and Rule 2, show that
for any ¢ : 0" — ¥ and N = N’ € Ay’ [¥"],

hcom’ =7 X 1 (@pp(MY/, N); &t < y.app(Ny', N)) = app(Ni (1 /y)t/, N') € By [N/a] [9].

This follows by By1)/[N/a] typek,, (V"] and r;¢)" = rj1)’ on the left, and Rule 3.

(coe) Now, suppose that 9 : ( U x) = Wand M =M€ (a:A(r/z)) — By(r/z) V'], and show
that coe;f(*(;Aw_}qu(M) coe " A’w)—>B’¢(M/) € (a:AyY(r'/x)) — By(r'/z) [¥']. By Lemma 43 on
both sides and Rule 2, we must show that for any ¢’ : ¥ — ¥" and N = N’ € Ay (v’ /z) [V"],

7 1! Mo e i) N
Coea:.Bdn/)’[coei%Eﬁ(N)/a] (app< ¥ ’Coea:.quw’ ( )))
S0 (app(M o] T (N) € Byt (o' f) [N /a] (W],

m~B/¢¢/[C°e$‘A/¢w/(N/)/a]

By Ay’ = A"y’ typey,, [W”, 2], we have coel 4 7 (N) = coe], 4,77, (N') € Ayw!(r'y! Jz) [9”], and

the corresponding instances of B’ and B’y are equal as Kan types. By Rule 3 we have
/ v/ s’ . Y v/ )’ "
app(M/, coel, 'y Y (N)) = app(M'y/, coel, 4,7V (N')) € B (r)/ fr)[coe] Yy 7Y (N) fa] [W"]

so the above coe are equal in By’ (r')’/ x}[coeiﬁﬁtlwl (N)/a]. The result follows by Lemma 33

and coe AqZ;Z; v (N) =N € Ay (r'y)' Jz) [9"].

Finally, show that if r = 7’ then coe;f(*;:/Aw)_)Bw (M) =M € (a:AY(r'/x)) — By(r'/z) [¥']. By
Lemma 43 on the left, Rule 4 on the right, and Rule 2, it suffices to show that for any ¢/ : ¥ — ¥’
and N =N’ € Ay (r'y Jx) [¥"],

7 ~sr! )’ / 7/ )’ . ! ATt ryod "
CoeJ:.B'z/)l/)’[Coe;l_i:;i(N)/a}(app(Mw ,COGI.Apr, (N))) - aPP(Mw 7N ) € wa <T 1/} /IL’>[N/CL] [\Ij }

By r ="', Ay typekan [P, 2], Rule 3, and Bi/JW[coe;/.ﬁ@af(N)/a] typeka, [P, z], it suffices

to show app(M ', N)=app(Mv/', N') € By (r'¢' /2)[N/a] [¥"], which again follows by Rule 3. [
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5.2 Dependent pair types

Let 7 = e (v) or uP(v, o) for any cubical type systems v, o; in 7, whenever A = A’ typeye [V,
a:A>> B=DB'type,. [V], and o = {((M,N),(M',N")) | M=M" € A[V]AN=N'"€ B[M/a] [¥]},
we have 7(¥, (a:A4) x B, (a:A") x B, ).

Rule 7 (Pretype formation). If A= A’ type
(a:A") x B’ type,,. [¥].

[U] and a: A > B= B’ type,. V] then (a:A) x B=

pre pre

pre

Proof. We have PTy(7)(¥, (a:A) x B, (a:A") x B’,_) because (a:A) x B valg and judgments are
preserved by dimension substitution. For Coh([[(a:A) x B]), assume [(a:A) x Bl ((M, N), (M',N")).
Then M =M’ € Ay [¥'] and N = N’ € By[M/a] [V']; again, (M, N) valgp and these judgments are
preserved by dimension substitution, so Tm([(a:A) x B]y)((M, N), (M', N')). O

Rule 8 (Introduction). If M =M’ € A [¥] and N = N’ € B[M/a] [¥] then (M,N)=(M' ,N') €
(a:A) x B [¥].

Proof. Immediate by Rule 7. O

Rule 9 (Elimination). If P=P’ € (a:A) x B [V] then fst(P)=fst(P’') € A [V] and snd(P)=snd(P’) €
Blfst(P)/a] [¥].

Proof. For any ¢ : W' — W, Py | (My,Ny), My € Ay [¥'], and Ny, € Byp[My/a] [¥']. For
part (1), apply coherent expansion to fst(P) with family {qu}gg/; then (Mg, )¢ = My € Ay [¥)
by P € (a:A) x B [V] at idy,?. By Lemma 41, fst(P) = Mg, € A [¥], and part (1) follows by
Mg, = Mi’dq/ € A [¥] and a symmetric argument on the right side.

For part (2), apply coherent expansion to snd(P) with family {N¢}1‘Ip’/. We have (Nig, )1 = Ny €
By[(Mig, )¥/a] [¥'] by P € (a:A) x B [¥] at idy, ¥, so by Lemma 41, snd(P)=N,q, € B[Miyq, /a] [¥].
Part (2) follows by B[Myq, /a] = Blfst(P)/a] typeye [¥] (by a: A > B = B’ type,, [¥] and
M, = fst(P) € A [¥]), Nigy = Ny, € B[Mi,/a] [V], and a symmetric argument on the right
side. O
Rule 10 (Computation). If M € A [¥] then fst((M,N)) =M € A [¥]. If N € B [¥] then
snd((M,N)) =N € B [V].

Proof. Immediate by Lemma 43. O
Rule 11 (Eta). If P € (a:A) x B [¥] then P = (fst(P),snd(P)) € (a:A) x B [¥].

Proof. By Lemma 38, P |} (M,N), P=(M,N) € (a:A) x B [V], M € A [¥], and N € B[M/a] [V].
By Rule 8 and Lemma 37 and transitivity, we show [AJ%(M, fst(P)) and [B[M/a]]¥(N,snd(P)).
This is immediate by fst(P) —* fst((M, N)) — M and snd(P) —* snd((M, N)) — N. O

Rule 12 (Kan type formation). If A = A’ typex., [¥] and a: A > B = B’ typexa, [¥] then
(a:A) x B=(a:A") x B typexa, [V].

Proof. 1t suffices to check the five Kan conditions.
(hcom) First, suppose that ¢ : ¥/ — ¥,

—_\

_ / . .
1. r; = r; is valid,
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2. M =M e (a:Ap) x By [¥],
3. Ni=Nj € (a:AY) x By [V, y | r; = r},r; = r}] for any i, j, and
4. Ni(r/y) =M € (a:A) x By [V | r; = r}] for any 1,

and show hcom?gfgib)wa(M;fi — y.N;) = hcom’(”gffll,w)xB,w(M’; & — y.N/) € (a:Ay) x By [V']. B
Lemma 43 on both sides and Rule 8, it suffices to show (the binary version of)

hcomrw’" (fst(M); & — y.fst(IV;)) € Ay [¥']

ComZEZ[F/a] (snd(M); & — y.snd(V;)) € B¢[hC0mA¢/a] K4 ]
where F' = hcomy *(fst(M); §; — y.fst(N;)).

We have hcom 4, € At [V'] and F € Ay [V, 2] by A typeg,, [¥] and Rule 9. We show com,, gy(r/q) €
Bijlhcom 4 /a] [¥'] by Theorem 44, observing that Biy[F/a] typey,, [V, 2], F(r'/z) = hcom 4y,

1. snd(M) € BY[F(r/z)/a] [¥'] by F(r/z) =fst(M) € Ay [¥'] and Rule 9,

2. Ni=Nj € BY[F(y/z)/a] [,y | ri = rj,r; = rj] by Fly/z) =fst(N;) € Ay [W',y | ry = r]]
and Rule 9, and

3. snd(N;(r/y)) =snd(M) € By[F(r/z)/a] [Y' | r; = r}]] by F(r/z) =fst(M) € Ay [¥'] and
Rule 9.

Next, we must show that if r = 7" then hcom(q. ap)x 5y =M € (a: A7) x By [¥']. By Lemma 43,
hcom g 4y x By = (hcom 4y, com., pyip/q)) € (a:Ay) x By [V']. By Definition 22 and Theorem 44,
hcom gy = fst(M) € A [V'], com, py(r/a) = snd(M) € BY[F(r/z)/a] [V'], and By[F(r/z)/a] =
Bil[fst(M)/a] typekan [¥’]. The result follows by Rule 11.

For the final hcom property, show that if r; = r; then hcom,.ay)xpy = N < "1y) € (a:A) x
B [¥]. The result follows by hcom 4 = fst(N;(r ’/y>) € Ay [W'], com, gy(r/a) = snd(Ni(r'/y)) €
ByY[F(r'/z)[a] [¥'], and BY[F(r'/z)/a] = By[fst(Ni(r'/y)) /a] typegan [¥']-

(coe) Now, suppose that Y (V,2) - Uand M =M € ((a:AY) x By)(r/z) [¥'], and show
coel Ty yxmp(M) = c0el i gy (M) € ((a:A) x By)(r' /) [¥]. By Lemma 43 and Rule 8,
it suffices to show (the binary version of)

coe 1 (st (M) € Av(r'[z) W]
€€ T coer— (rn(aryy/al (SNA(M)) € BUb (1 [ [coe 3 (st (M) /a] [¥']

coe z. At

We know that coel”/, L(fst(M)) € AY(r'/z) [V'] and Biplcoel "7 (fst(M))/a] typek,n [V 2] by
A typekan [V, 2], a: Aw > Bv typeka, [¥/,z], and Rule 9. We also know that snd(M) €
By (r/z)[fst(M)/a] [¥'] and (coe;”;‘fp(fst(M))xr/:@ = fst(M) € A(r/x) [V'], so coe, y[../q] €
By(r'[z) [coe;”;";l/}(fst( ))/a} [] and the result follows.

Finally, show that if » = / then coe”, oAy x gy (M)=M € ((a:Av)x By){r/x) [¥']. By Lemma 43
and Rules 8 and 11, this follows from coe, ay = fst(M) € As(r/x) [V'] and coe, pyj../q) =snd(M) €

By(r/x)[fst(M)/a] [¥']. O
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5.3 Path types

Let 7 = xX"(v) or uP®(v, o) for any cubical type systems v, o; in 7, whenever A = A’ typeyre [V, 7],
P.=P! € Ale/x) [V] fore € {0,1}, and o = {((x) M, (x) M) | M=M' € A [¥,z]A\Ve. (M (c/x)=P. €
Ale/x) [P])}, we have 7(V, Pathy 4(Po, P1), Path, 4/ (P}, P{), ).

Rule 13 (Pretype formation). If A= A" type,. [V,z] and P. = P. € A(e/x) [¥] for ¢ € {0,1},
then Pathy a(Po, P1) = Pathy, a/(Fy, Py) typepye [V].

Proof. We have PTy(7)(V, Path, 4(Py, P1),Path, a/(P}, Py),-) because Path, 4(Py, P1) valm and
judgments are preserved by dimension substitution. To show Coh([Path, a(FPy, P1)]), suppose
¢ ¥ — U and [Pathy a(Po, P1)]y((x)M, (x)M"). Then M =M’ € Ay [V, z] and M(e/x) =
P.p € AYple/x) [V']; by ()M valgp and the fact that these judgments are preserved by dimension
substitution, Tm([Path,. 4 (FPo, P1)]v)((z) M, (x)M"). O

Rule 14 (Introduction). If M =M' € A [V, x| and M (e/x) = P. € Ae/z) [V] for e € {0,1}, then
()M = ()M’ € Path, a(Py, P1) [V].

Proof. Then [Path,_4(Po, P1)]({x) M, (x)M'), so the result follows by Coh([Path, 4(FPy, P1)]). O
Rule 15 (Elimination).

1. If M = M’ € Path, 4(Py, P1) [¥] then M@Qr = M'Qr € A(r/x) [¥].

2. If M € Pathy 4(Py, P1) [¥] then M@z = P, € Ale/z) [¥].

Proof. Apply coherent expansion to M@Qr with family {My(r/z) | My |} <x)Mw}$/ By M €
Path, A (Po, P1) [V] at idy, 1 we know (Mig, ) =My, € AY [V, z], so (Mg, )t (ri/z) =My (ri/z) €
A(r/x)y [¥']. Thus by Lemma 41, MQr = Mg, (r/z) € A(r/z) [¥]; part (1) follows by the same
argument on the right side and Mg, = M/, € A [¥,z]. Part (2) follows from M Qe = Mg, (¢/x) €

idy

Ale/z) [¥] and Mg, (¢/z) = P. € Ale/z) [0]. O
Rule 16 (Computation). If M € A [W, 2] then ((z)M)@r = M(r/z) € A{r/z) [¥].

Proof. Tmmediate by ((z)M)@r —sag M{r/z), M(r/z) € A(r/z) [¥], and Lemma 43, O
Rule 17 (Eta). If M € Path, 4(Py, Py) [¥] then M = (2)(M@z) € Pathy 4(Py, P) [¥].

Proof. By Lemma 38, M | ()N and M = (x)N € Pathy 4o(Fo, P1) [¥]. By Rule 15, MQx =
((x)N)Qz € A [¥,z], so by Lemma 43 on the right, MQz =N € A [V, z]. By Rule 14, (z)(MQz) =
(x)N € Path, 4(Py, P1) [¥], and the result follows by transitivity. O

Rule 18 (Kan type formation). If A= A’ typex., [V, ] and P- = P! € A{e/x) [¥] for e € {0,1},
then Path, 4 (Py, P1) = Path, 4/ (P), P) typekan [V].

Proof. 1t suffices to check the five Kan conditions.
(hcom) First, suppose that ¢ : ¥/ — ¥,

N PN
1. & =r; =71, is valid,

2. M =M’ € Path, ay(Pot, Prip) [V],

30



3. N; = Nj € Pathy sy (Pot), Prp) [,y | ry = 7}, 7j = r}] for any i, j, and
4. Ni(r/y) =M € Pathy ay(Pop, P1¢p) [V | r; = r}] for any i,

and show the equality hcomf,S;:;I'A(PmPl)w(M; & —y.N;) = hcom?{,;:;wA,(P&P{))w(M’; & — y.N)) e
(Path,_a(Fo, P1))y [¥]. By Lemma 43 and Rule 14 on both sides it suffices to show

hcomrAffl(M@x; r=¢<— P, & — y.N,Qx)

= hcom'y} (M'Qz;z = & < _Plp,& — y.N/Qzx) € Ay [V, 2]
and (hcomay)(e/z) = P.yp € AYp(e/x) [¥']. By our hypotheses and Rule 15,
1. MQx = M'Qx € Ay [V, z],
2. Py =Phpe Ay [W x| x=¢] and P.yp = MQz € Ay [V x| x = €],

3. NiQx = NiQx € A [V, x,y | r; = rj,r; =7ri], NiQr = Plyp € AY [V, 2,y [ r; = 7]

LT = ¢,
and Ni(r/y)Qz = MQz € A [V, x| r; = 1],

and so by Definition 22, hcom 4y = hcom g1y, € At ¥, z] and (hcom ay)(e/x) = Poop € Ay [V].
Next, show if r = r’ then hcom’("g:;z'A(PmPl))w(M;52- — y.N;) = M € (Path, a(Py, P1))y [¥'].
By Rule 14 and Definition 22 the left side equals (x)(M@z), and Rule 17 completes this part.
Finally, if r; = 7/ then hcoma;;:;\z‘A(PO,Pl))'w(M;57: — y.N;) = Ni(r' Jy) € (Path, a(Po, P1))y [V'].
By Rule 14 and Definition 22 the left side equals (x)(N;(r'/y)@zx), and Rule 17 completes this part.
(coe) Now, suppose that ¢ : (¥ y) — ¥ and M = M’ € (Path, 4(Po, P1))v(r/y) [¥’], and
show that Cer?;athz,A(Po,Pl))¢(M) = coe;'”(’gathr‘A/(PO,7P1/)W(M’) € (Pathy a(Po, P1))y(r' Jy) [¥']. By
Lemma 43 on both sides and Rule 14, we show

comZ:Z‘Z(M@x; r=c—y.Pap)= comgj’?;p(M'@a:; T =¢c <= y.P) e AYir'/y) [V, 1]

and (comy ay)(e/x) = Pp(r'/y) € Ap(r'/y)(e/x) [V']. By our hypotheses and Rule 15, MQzx =
M'Qz € AY(r/y) [V, x], P-=Plp € AY [V, z,y | x = ¢, and Pap(r/y)=MQz € AYp(r/y) [V, x |
x = €|, so by Theorem 44, comy, 4 =comy, a1y, € A(r’/y) [V, z] and (comy ay)(e/x) = Pap(r'/y) €
Ap(r'[y)(e/z) [V']. /

Finally, show that if r =1’ then coe[ "\ = p p ), (M) =M € (Pathy 4(FPo, P1))y(r'/y) [¥'].
By Rule 14 and Theorem 44 the left side equals (z)(M@Qz), and Rule 17 completes the proof. [

5.4 Equality pretypes

Let 7 = uP"(v, o) for any cubical type systems v, o; in 7, whenever A=A" type,, . [V], M=M" € A[¥],
N=N'€A[V], and ¢ = {(x,%) | M =N € A [¥]}, 7(¥,Eq (M, N),Eq (M, N'), ).

Rule 19 (Pretype formation). If A= A’ type,,. [V], M =M' € A [V], and N = N' € A [V], then

EqA(M7 N) = EqA’ (Mla N/) typepre [\Il]

Proof. We have PTy(7)(¥,Eqs(M,N),Eqq (M',N'),[Eqs(M,N)]) because Eq, (M, N) valgp and
judgments are preserved by dimension substitution. To show Coh([Eq,4(M, N)]), suppose that
[Eqs(M,N)]y(*,%x). Then M =N € A [V], so My =Ny € Ay [V'] for all ¢ : ¥ — ¥, so
Tm([Eq4 (M, N)]®)(*,*) holds by this and x valg. O

pre
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Rule 20 (Introduction). If M =N € A [¥] then » € Equ (M, N) [¥].
Proof. Then [Eq 4 (M, N)](*,*), so the result follows by Coh([Eq4 (M, N)]). O
Rule 21 (Elimination). If E € Eq (M, N) [V] then M =N € A [V].
Proof. Then [Eqa(M,N)]Y(E,E)so E | xand M =N € A [V]. O
Rule 22 (Eta). If E € Eq,(M, N) [¥] then E = * € Equ (M, N) [¥].

Proof. Immediate by Lemma 38. 0

5.5 Void

Let 7 = pX"(v) or uP®(v, o) for any cubical type systems v, o; we have 7(¥, void, void, ) for ¢ the
empty relation. By void valg, PTy(7)(¥, void, void, &) where each avy is empty.

Rule 23 (Pretype formation). void type,.. [V].

Proof. We have already observed PTy(7)(¥, void, void, [void]); Coh([void]) trivially because each
[void] g is empty. O

Rule 24 (Elimination). It is never the case that M € void [V].
Proof. 1f Tm([void])(M, M) then [void]y, (M, M), but [void]y, is empty. O

If T'>> M € void [¥] then it must be impossible to produce elements of each pretype in T, in
which case every (non-context-restricted) judgment holds under I'. In Section 6, we say that if

M € void [¥] then J [V].

Rule 25 (Kan type formation). void typex,, [¥].

Proof. Tt suffices to check the five Kan conditions. In each condition, we suppose that M = M’
void [¥’], so by Rule 24 they vacuously hold. O
5.6 Booleans

Let 7 = pf"(v) or pP(v,0) for any cubical type systems v,o; we have 7(¥,bool, bool, ¢) for
© = {(true, true), (false, false) }. By bool valg, PTy(7)(¥, bool, bool, o) where each ays = .

Rule 26 (Pretype formation). bool type,.. [¥].

Proof. We have already observed PTy(7)(¥, bool, bool, [bool]); for Coh([bool]) we must show that
Tm([bool])(true, true) and Tm([bool])(false, false). These hold by true valg, [bool]y:(true,true),
false valg, and [bool]y-(false, false). O

Rule 27 (Introduction). true € bool [¥] and false € bool [¥].

Proof. Tmmediate by Coh([bool]). O
Rule 28 (Computation). If T € B [V] then ify a(true; T, F) =T € B [V]. If F € B [¥] then
ify.4(false; T, F) = F € B [¥].
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Proof. Immediate by ify 4(true; T, F) —g T, ify a(false; T, F') — g F', and Lemma 43. O

Rule 29 (Elimination). If M = M’ € bool [¥], b: bool > C type,. [¥], T =T € C[true/b] [¥],
and F = F' € Clfalse/b] [¥], then ify o(M;T,F) =ify o (M";T", F") € C[M/b] [¥].

Proof. Apply coherent expansion to the left side with {ify ay(My; T, Fy) | M) |} Mqﬁ}z‘i’/. We
must show ify ay(My; T, Fp) = ifp ay((Miay )0; T, Fp) € Cy[Mv/b] [¥']. Either M, = true
or M, = false. In either case My, = My because [[b00|]]l$,((Midqj)1/J,M¢> and Mg, = true or
Miq4,, = false. Consider the case M, = true: we must show ify sy (true; T0, Fip) € Cp[Map/b] [V'].
By Lemma 38 we have M1 = true € bool [¥'] so Cy[M1p/b] = Cipltrue/b] typeye [¥']. The result
follows by Rule 28 (with B = C4|true/b]). The M, = false case is symmetric.

We conclude by Lemma 41 that if, 4 (M;T, F) = ify o(Mi4,; T, F) € C[M/b] [¥]. By transi-
tivity, Lemma 38, and the same argument on the right, it suffices to show ify o(Mig,; T, F) =
ify 1 (Ml ; T',F') € C[Ma,/b] [¥]. By M =M’ € bool [¥], either Mg, = M, = true or
Mg, = Mi,d\p = false, and in either case the result follows by Rule 28 on both sides. O

dy

Notice that Rule 29 places no restrictions on the motives b.A and b.A’; these motives are only
relevant in the elimination rule for wbool.

Lemma 47. If M € bool [¥,y] then M (r/y) = M({r'/y) € bool [¥].

Proof. By [[bool]]%q, y)(M, M) we know M | true or M | false, so by Lemma 38 either M = true €

bool [¥,y] or M = false € bool [¥,y]. In the former case, both M (r/y) = true € bool [¥] and
M (r'/y) = true € bool [¥], and similarly in the latter case. O

Rule 30 (Kan type formation). bool typex,, [¥].

Proof. 1t suffices to check the five Kan conditions.
(hcom) Suppose that

—_—\
1. 7 = r} is valid,

2. M = M’ € bool [V'],
3. N; = N} € bool [¥',y | r; = rj,r; = r] for any i, j, and

4. Ni(r/y) =M € bool [¥' | r; = r}] for any i,

and show hcoml=h (M;r; = 1} < y.N;) = hcomf 2 (M';r; = r} < y.N!) € bool [¥’]. This is imme-

bool bool
diate by Lemma 43 on both sides, because hcomlzh (M;r; = 7, < y.N;) —g M and M = M’ €
bool [¥]. Similarly, if » = 7/ it is immediate that hcom{Z% (M;r; = 1) < y.N;) = M € bool [¥].
Now suppose that r; = 7}, and show hcomlZ (M;r; = 7} < y.N;) = N;('/y) € bool [¥']. By

Lemma 43 it suffices to show M = N;(r'/y) € bool [¥'], which holds by M = N;(r/y) € bool [¥']
and Lemma 47.
(coe) Suppose that M = M’ € bool [¥], and show that coe” ;" (M) = coe” ;" (M') € bool [¥].

;~z.bool x.bool
This is immediate by Lemma 43 on both sides, because coel"t" (M) ——gm M and M =M’ € bool [¥].
Similarly, if r = 7/ it is immediate that coe’ ;" (M) = M € bool [¥']. O
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5.7 Natural numbers

Let 7 = pX@"(v) or uP(v, o) for any cubical type systems v, o; we have 7(¥, nat, nat, Ny ), where N is
the least context-indexed relation such that Ny(z,z) and Ny (s(M),s(M’)) when Tm(N(¥))(M, M").
By nat valg, PTy(7)(¥, nat, nat, N(¥)).

Rule 31 (Pretype formation). nat type,. [V].

Proof. 1t suffices to show Coh([nat]). We have Tm([nat])(z,z) and Tm([nat])(s(M),s(M’)) when
Tm([nat])(M, M') by z valg, s(M) valg, and Tm([nat]y) (M, M) for all ¢ : W' — . O

Rule 32 (Introduction). z € nat [¥] and if M = M’ € nat [¥] then s(M) =s(M') € nat [¥].
Proof. Tmmediate by Coh([nat]). O

Rule 33 (Elimination). If n:nat > A type,. [V], M = M’ € nat [V], Z=Z" € Alz/n] [V], and
n:nat,a:A > S=S'" € Als(n)/n] [¥], then natrec(M; Z,n.a.S)=natrec(M’; Z' ,n.a.S") € A[M/n] [V].
Proof. We induct over the definition of [nat]. The equality relation of nat, Tm([nat]), is the lifting
of the least pre-fixed point of an order-preserving operator N on context-indexed relations over
values. Therefore, we prove (1) the elimination rule lifts from values to elements; (2) the elimination
rule holds for values; and thus (3) the elimination rule holds for elements.

Define @y (Mo, M) to hold when [nat]y (Mo, Mj) and for all n:nat > A type,. [V], Z =
Z" € Alz/n] [¥], and n:nat,a: A > S =5 € Als(n)/n] [¥], we have natrec(My; Z,n.a.S) =
natrec(M{; Z',n.a.S") € A[My/n] [¥].

1. If Tm(®(W))(M, M’) then the elimination rule holds for M, M.

By definition, ® C [nat], so because Tm is order-preserving, Tm([nat](¥))(M, M"). Apply co-
herent expansion to natrec(M; Z,n.a.S) at A[M/n] type,. [¥] with {natrec(My; Z1),n.a.S7) |

My || Mw}gl. Then natrec(My; Zv, n.a.Sv) € Ap[My/n] [¥'] for all ¢ : ¥ — ¥ because
oY% (M, M) by Tm(®(¥))(M, M’). We must show

natrec(My; Z1p, n.a.Sv) = natrec((Miq, )¥; Zv, n.a.Sy) € Ap[My/n] [V]

but by Lemma 37 and (Mg, )¢ = My, € nat [¥'] it suffices to show these natrec are related by
[Ay[M,/n]]*, which follows from &y, (Mg, )1, My).

2. If [[natﬂq;(Mo, M(/)) then @@(Mo, M(/J)
We prove that N(®) C &; then ® is a pre-fixed point of N, and [nat] C ® because [nat] is
the least pre-fixed point of N. Suppose N(®)g (M, M]). There are two cases:
(a) My = M/} =z
Show natrec(z; Z,n.a.S) = natrec(z; Z’,n.a.S") € Alz/n] [¥], which is immediate by Z =
Z' € Alz/n] [¥] and Lemma 43 on both sides.
(b) My = s(M), M} = s(M’), and Tm(®(%))(M, M),
Show natrec(s(M); Z,n.a.S) = natrec(s(M'); Z',n.a.S") € A[s(M)/n] [¥]. By Lemma 43
on both sides, it suffices to show

S[M/n][natrec(M; Z,n.a.S)/a] = S'[M’ /n][natrec(M’; Z' ,n.a.S") Ja] € A[s(M)/n] [¥].
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We have M =M’ € nat [¥] and natrec(M; Z,n.a.S) =natrec(M'; Z' ,n.a.S") € A[M/n] [¥]
by Tm(®(¥))(M, M’), so the result follows by n:nat,a: A > S=5" € A[s(n)/n] [¥].

3. Assume Tm([nat](¥))(M, M'); Tm is order-preserving and [nat] C ®, so Tm(®(V))(M, M').
Thus the elimination rule holds for M, M’, completing the proof. O

Rule 34 (Computation).
1. If Z € A [¥] then natrec(z; Z,n.a.S) =Z € A [¥].

2. If n:nat > A type,, [V], M €nat [¥], Z € Afz/n] [¥], and n:nat,a: A > S € Als(n)/n] [V],
then natrec(s(M); Z,n.a.S) = S[M/n][natrec(M; Z,n.a.S)/a] € A[s(M)/n] [¥].

Proof. Part (1) is immediate by Lemma 43. For part (2), we have natrec(M; Z,n.a.S) € A[M/n] [¥]
and thus S[M/n][natrec(M; Z,n.a.S)/a] € Als(M)/n] [¥] by Rule 33, so the result again follows by
Lemma 43. O

Rule 35 (Kan type formation). nat typex,, [V].
Proof. Identical to Rule 30. O

5.8 Circle

Let 7 = puX®"(v) or uP(v, o) for any cubical type systems v, o; we have 7(¥, S, S!, Cy), where C is
the least context-indexed relation such that:

1. Cy(base, base),

2. Cy4)(loop,, loop,), and

3. Cy(fcom™ " (M;r; = 1, < y.N;), feom™ " (M';r; = 7} < y.N!)) whenever

#r's ri # 1 for all i; 7 = 7y, 7 = 0, and r; = 1 for some i, j;

m(C(W))(M, M)

m(C(¥))(Niyp, Njw) for all 4, j and o : W' — (U, y) satisfying r; = r{,7; = r; and
m(C(U"))(N;(r/y)y, M) for all i,j and ¢ : ¥/ — U satisfying r; = r/.

b
(c
(d)
By S! valg it is immediate that PTy(7)(¥, S, St, C(¥)).

(
(a)
(b)

)

i e

Lemma 48. If

_\

1. r; =1} is valid,
2. Tm([S')(W))(M, M),
3. Tm([[Sl]](\II’))(Niw,NJ’-Q/)) for alli,j and ¢ : V' — (¥,y) satisfying r; =71, r; =r’, and

]?
4. Tm([SY(¥))(Ni{r /y)p, Map) for all i, and < : W' — U satisfying r; = T,

then Tm([S']()) (feom™” (M s = 11 > y.N;), feom”" (M 7 = 1 = y.N))).
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Proof. Let us abbreviate the above fcom terms L and R respectively. Expanding the definition of
Tm, for any 91 : ¥1 — ¥ and 15 : ¥o — ¥ we must show Ly || L1, Ry | Ry, and [[Sl]]g,z relates
Lypg, Lipnipa, R11be, and Rii1hs. We proceed by cases on the first step taken by Ly and L.

1.

T =191
Then Ly —g M)y, Ry —g M4y, and the result follows by Tm([S'](¥))(M, M').

- b1 F 'y, rpdn = 1iaby (where rinhy # riahy for all i < j), and ri1be = r'i1aba.

Then Ly —— N;(r'/y)i1, Lpia — Mi1iba, Ripy —> N]’-<r’/y>¢}1, and Ryt —
M"1ip2. Because yy satisfies r; = 7}, by (3) and (4) Tm([[Sl]](\Ill,y))(Njwl,N]’.wl) and
Tm([S'](1))(N;(r/y)tbr, Map1). By the former at (41 /y), o, [S']q, (N; (' /y)trtba, L1iba)
and [[Sl]]lé2(L1w2,R1@ZJ2). The latter at 19, idy, yields [[Sl]]gQ(Nj (r/y)yn1ba, Mip11b9); by tran-
sitivity and ri¢q1y = r'111h9 we have [[Sl}]gz(Lle, Lap11ps). Finally, by Tm([S'](W))(M, M")
we have [S']y,_ (Lth1tba, Repribo).

- 1 # ', mipr = iy (and this is the least such ), 7192 # r'11)e, and i1 = r}zﬁlwg

(and this is the least such j < 7).

Then Lypy = Ni{r'/y)ip1, Liprha — Nj(r' [y)h1¢pa, Ripr — NI(r'/y)i1, and Rip1ihg +—
Ni(r'/y)1b2. In this case, (r'/y)ih1¢)2 satisfies r; = r{,7; = r’, and the result follows because
Tm([S'](¥2)) relates Ni{(r'/y)ib1tha, Nj(r' [y)pitba, Nj(r' [y)riba, and N(r' [y)iiiba.

-y # "1, iy # iy for all 4, and T = r'iride.

Then Lty val, Lip11pg — Map1pa, Rapy val, and Riytps — M'1p11)o. In this case, L1ty =
Lap1aby and Rytby = Rip1ha, so the result follows by Tm([S'](W))(M, M').

-y # ', mipy # iy for all 4, rpiabe # r'hr1ape, and i1y = 7‘;1/111#2 (the least such j).

Then Ly val, Lip1thg — Nj(r'/y)i1tbe, Ry val, and Rip1tpg — Ni(r'/y)i11be. The result
follows because L1ty = Lipe, Ritpa = Ri11)2, and because (r'/y)i1¢o satisfies r; = 7/

Tm([SU(W2)) (N (' Jy)briim, N [y bain). :

-1 # ', rin # riapy for all i, and r1ie # r'iibe, and riy1de # r}dmpg for all 5.

Then L)y val, Lip11bg val, Ripq val, and Rip1eps val, so it suffices to show [S']w, (L1902, Rip1)s).
We know r911p9 = riap11 is valid and 79192 # rip1)s for all ¢, so there must be some 4, j
for which rip19pe = rj1te, mitb13h2 = 0, and r3p1P2 = 1. The result follows immediately by
the third clause of the definition of [S']. O

Rule 36 (Pretype formation). S type,. [¥].

Proof. Tt remains to show Coh([S!']). There are three cases:

1.

Tm([S'](¥))(base, base).

Immediate because base valg.
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2. Tm([S'](¥, 2))(loop,, loop,,).

Show that if ¢y : U1 — (¥,z) and ¢ : U — Uy, loop,,, I M1 and [S']y, (Mith2,100p,4, s, ).
If z¢y = ¢ then M; = base, loop,,,,, — base, and [S']y, (base, base). If x4y = 2’ and
2'tpy = €, then M; = loop,/, loop,,,, — base, loop,,, ,, — base, and [S']y, (base, base).
Otherwise, 711 = ' and /¢y = 2", so M; = loop,, and [S']y, (loop,, loop,).

3. Tm([SY(¥)) (feom™"" (M ;r; = T y.N;), feom™ " (M'; r; = ri — y.N])) where. ..

This is a special case of Lemma 48. (Note that r; = 7} is valid.) O
Rule 37 (Introduction). base € S! [¥], loop, = base € S* [¥], and loop, € S! [¥].

Proof. The first is a consequence of Coh([S'])); the second follows by loop, g base and Lemma 43;
the third is a consequence of Coh([S!]) when r = , and of Lemma 43 when r = ¢. O

Rule 38 (Kan type formation). S' typex., [¥].

Proof. Tt suffices to check the five Kan conditions.
(hcom) First, suppose that

_\

1. r; =1} is valid,
2. M =M €St [¥],
7,7

3. NiiNJ’-eSl[ "ylri=r! r]:r;] for any i, j, and

4. Ni(r/y) =M € S' [V | r; = rl] for any i,

and show hcomrwr (M1 =7l = y.N;)= hcom“”’ (M';7; =7l — y.N]) € St [¥']. This is immediate
by Lemma 43 on both sides (because hcomgl —gp fcom) and Lemma 48.

Next, show that if » = 7’ then hcom’"wr (M;r; =rl < y.N;) =M € S' [¥]. This is immediate
by hcomTWT (M;ri =rl = y.N;) —m fcom”™"’ (M;ri =71, <= wy. N) s M and Lemma 43.

For the final hcom property, show that if ; = r} then hcomg;” (M ri =71 = y.N;) =N (r'Jy) €
St [¥']. We already know each side is an element of St, so by Lemma 38 it suffices to show
[[Sl]]u,(hcomrwr (M;r; =7t = y.N;), Ni(r'/y)). If r = 1’ then hcom ——2 M and the result follows
by Ni(r/y) =M € S' [V | r; = rl], because idy satisfies r; = r{. Otherwise, let r; = 7% be the first
true equation. Then hcom —2 N, (r’/y) and this follows by N; = N; € St [V, y | r; =7l,7; = r3l.
(coe) Now, suppose that M = M’ € S' [¥] and show coe’ 31" (M) = coe™ 21 (M') € S' [¥'].

z.St z.St
This is immediate by coe;_”éfl(M ) —m M and Lemma 43 on both sides. Similarly, if » = 7’ then

Coe’””éf (M) =M €S' [¥'] by Lemma 43 on the left. O
Rule 39 (Computation). If P € B [¥] then S'-elim. 4(base; P,z.L) = P € B [¥].
Proof. Immediate by S'-elim._4(base; P,z.L) g P and Lemma 43. O

Rule 40 (Computation). If L € B [V,z| and L{e/z) = P € Ble/x) [¥] for ¢ € {0,1}, then
St-elim 4 (loop,; P,x.L) = L{r/z) € B(r/xz) [V].
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Proof. If r = ¢ then this is immediate by Lemma 43 and L(e/z) = P € B{e/x) [¥]. If r = y then
we apply coherent expansion to the left side with family {Pv | yip = 5}1‘1; U{Ly(z/z) | yy = z}gl
The idy element of this family is L(y/z); when yi = ¢ we have L(y/z)¢ = Py € B(y/z)y [¥']
(by (y/x)ip = (¢/x))), and when yip = z we have L(y/x) = Lip(z/z) € Bly/z)p [¥'] (by
¢(z/x) = (y/x)1p). Thus by Lemma 41, S*-elim. 4(loop,; P,x.L) = L{y/x) € B{y/xz) [¥]. O

To establish the elimination rule we must induct over the definition of [S!]. As [S'] was defined in
Section 3 as the least pre-fixed point of an order-preserving operator C' on context-indexed relations,
we define our induction hypothesis as an auxiliary context-indexed PER on values ®y (My, M{)) that
holds when

1. [[Sl]]qj(Mo, Mé) and

2. whenever c: S>> A= A’ typey,, V], P=P' € Albase/c] [¥], L= L' € Alloop,/c] [¥,z], and
L{e/x) = P € Albase/c| [¥] for € € {0,1}, S'-elim. 4(Mo; P,x.L) = S'-elim. 4/ (M}; P',z.L') €
A[My/c] [¥]. (In other words, the elimination rule holds for M, and M).)

Lemma 49. If Tm(®(W))(M, M') then whenever c:S' > A=A’ typey,, [¥], P=P’ € Albase/c| [¥],
L=1"¢€ Alloop,/c] [¥,z], and L{c/x) = P € Albase/c| [¥] for e € {0,1}, S'-elim. a(M; P,z.L) =
St-elim, a/(M'; P, x.L') € A[M/c] [¥].

Proof. First we apply coherent expansion to the left side with family {S'-elim. 4y (My; Py, z.L1)) |
M |} My}y', by showing that

St-elime ay (My; Pip, x.Lap) = S'-elim ay((Migy )15 Py, x. L) € (A[M /<))y [W].

The left side is an element of this type by ®g/(My, My) and Ap[My/c] = Ap[Mp/c] typeka, (V']
(by My = My € St [¥']). The right side is an element by ®y (Mg, , Mi4,) and A[Myg, /c] =
A[M/c] typekan [¥]. The equality follows from (Mg, )1 | Ma, ®g:(My, Mz), and Lemma 38. Thus
by Lemma 41, St-elim. 4(M; P,z.L) = St-elim. o(Miq,; P,z.L) € A[M/c] [¥].

By the same argument on the right side, A[M/c]=A'[M’/c| typexa, [¥] (by M=M' € S! [¥]), and
transitivity, it suffices to show S'-elim. 4 (Miqy; P,z.L) = Sl—elimc,A/(]Mi’d\P; Pz L") € A[M/c] [V];
this is immediate by @y (Mia,, My, ) and A[Miq, /c] = A[M/c] typeka, [V]. O

Lemma 50. If C(®)y (Mo, M{) then Oy (Mo, My).
Proof. We must show that [S']w (Mo, M{), and that if c:S! > A = A’ typex,, [¥], P=P' €
Albase/c] [¥], L =L' € Alloop,/c|] [V,z], and L(e/x) = P € Albase/c| [¥] for ¢ € {0,1}, then
St-elim, a(Mo; P,z.L) = S'-elim. 4 (M}; P',z.L") € A[My/c] [¥]. There are three cases to consider.
1. C(®)y(base, base).
Then [S!]y(base, base) by definition, and the elimination rule holds by Rule 39 on both sides
(with B = A[base/c]) and P = P’ € Albase/c] [V].
2. C(®)(y,y)(loop,, loop,).

Then [[Sl]](q,,y)(loopy,loopy) by definition, and the elimination rule holds by Rule 40 on
both sides (with B = Afloop,,/c|] and Alloop,/c|(e/x) = Albase/c]| typeka., [V]) and L{y/z) =
L'{y/) € Alloop, /c] [¥].
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3. C(®)y (fcom™ ™ (M;r; = 7} < y.N;), feom™ (M';r; = 7 < y.N})) where

(a) r#7r's ry # v for all 4; r; =y, 77 = 0, and ) = 1 for some i, j;

(b) Tm(®(W))(M, M);

(c) Tm(®(¥'))(Nith, Nigp) for all i, and ¢ : W' — (¥, y) satistying r; = rj,7; = r; and
) T

]7
(d) Tm(®(¥"))(Ni(r/y), M) for all i, and ¢ : U — U satisfying r; = r;.

By construction, ® C [S!'], so Tm(®) € Tm([S']) and [S']y (fcom, fcom). By Lemma 49 and
Tm(®(W))(M, M'), St-elim, 4(M) = S'-elim, 4 (M') € A[M/c] [¥]. For all ¢ satisfying r; =
ri,7j = 173 We have Tm(q)( ")) (Nith, Njib), so by Lemma 49, S'-elim, 4 (N;) =S'-elim 4 (N}) €

A[N;/c] [¥,y | ri = r},rj = r}]. Similarly, St-elim, 4 (M) = S'-elim, a(N;(r/y)) € A[M/c] [\If ]

ri = 7rl).

Apply coherent expansion to the term Sl—elimclA(fcomT””/(M; & — y.N;); Px.L) at the type
Alfcom™ ™ (M; & — y.N;) /] typexan, [¥] with family:

Sl-elimay (M); Py, 2. Lap) r = 1"y
Sl-elim,. Ay (N (' [y)ab; P, . Lab) r # 'y, least j s.t. rj = 7“;-1/)
comrﬁ;ﬁf/ }(S ~elim¢_ay (Mp; P,z Lip); &p — y. ;) otherwise
= feom™ (M; &t — y.Niyh)
ﬂ = S'elimeuy (Ny; P, .Lib)

We must check three equations, noting that idg falls in the third category above. First:

comZﬁJﬁc] (S-elime_ag (M); &0 — y.T;) = S'-elim, 4y (M) € Avp[fcomep/c] [W']

when 71) = r/¢). This follows from Theorem 44, Av)[fcomi)/c] = Ap[F/c|{r'/z), and by Defini-
tion 22, AW[F/c)(r"/2) = A[M/} typeyan [¥] and AY[F)c] = AIN:(=/y) /el typeyan [V, |
rit) = ri)]. Next, we must check

com? ¥y (S elimeay (M); &b — y.13) = 8'elime 4y (N (' y)) € Avilfcomup/c] ¥

when 7 # 1'%, rj1p = 1, and rith # 19 for i < j; again this holds by Theorem 44. Finally,
we must check

com” VoY e (Sh-elime ap (Me); & — y.T;) € A[fcomy/c] [¥']

when 7 # i and rip # riyp for all i; again this holds by Theorem 44. Therefore by
Lemma 41,

S'-elimg 4 (fcom™ " (M; & < y.N;); P, x.L)

= comif}l’;[ = /] (St-elim, o (M; P,z.L); & < y.S'-elim. 4 (N;; P,z.L)) € Alfcom/c| [¥].

fcom

By transitivity and a symmetric argument on the right side, it suffices to show that two coms
are equal, which follows by Theorem 44. ]
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Rule 41 (Elimination). If M=M" € S! [¥], c:S! > A=A’ typey,, [V], P=P' € Albase/c| [V], L=
L' € Alloop, /c] [¥,z], and L{e/x) = P € Albase/c] [¥] for ¢ € {0,1}, then S'-elim, o(M; P,x.L) =
St-elim, a/(M'; P/ x.L') € A[M/c] [¥].

Proof. Lemma 50 states that ® is a pre-fixed point of C; because [S'] is the least pre-fixed point
of C, [S'] C @, and therefore Tm([S!]) € Tm(®). We conclude that Tm(®(¥))(M, M’), and the
result follows by Lemma 49. O

5.9 Weak booleans

Let 7 = X" (v) or pP(v, o) for any cubical type systems v, o; we have 7(¥, wbool, wbool, By),
where B is the least context-indexed relation such that:

1. By(true, true),

2. By(false, false), and

3. By(feom™ " (M;r; = r} — y.N;), feom™ " (M'; 7; = 1/ < y.N!)) whenever
(
(b) Tm(B(W))(M, M");

(c) Tm(B(P'))(Nitp, Njzp) for all 4, j and o : W' — (¥, y) satisfying r; = r},r; =1}

J
(d) Tm(B(Y))(N;i(r/y)p, M) for all 4, j and ¢ : ¥ — W satisfying r; = ;.

(

a) r#r'sry £l forall i; ry =rj, v, =0, andr = 1 for some 1, j;
) T
) T "+ and

By wbool valg it is immediate that PTy(7)(¥, wbool, wbool, B()).

We have included wbool to demonstrate two Kan structures that one may equip to ordinary
inductive types: trivial structure (as in bool) and free structure (as in wbool, mirroring S'). As the
fcom structure of wbool is identical to that of S!, the proofs in this section are mostly identical to
those in Section 5.8.

Lemma 51. If

—_—\
1. i = r} is valid,

2. Tm([wbool] (¥))(M, M),
3. Tm([wbool] (W) (N;, Nj/-z/J) for alli,j and ¢ : V' — (V,y) satisfying r; =1, r; = 7";-, and

4. Tm([wbool]|(¥"))(N;(r/y)p, M) for all i,j and v : V' — U satisfying r; = 1,

then Tm([wbool] (W) (feom™ " (M;r; = r} < y.N;), feom™ " (M'; 7 = r} < y.N)).
Proof. Identical to Lemma 48. O

Rule 42 (Pretype formation). wbool type,. [V].

pre

Proof. Show Coh([wbool]): Tm([wbool](¥))(true, true) and Tm([wbool](¥))(false, false) because
true valgp and false valg, and Tm([wbool](¥))(fcom, fcom) by Lemma 51. O

Rule 43 (Introduction). If M = M’ € bool [¥] then M = M’ € wbool [¥].
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Proof. Follows from [bool] C [wbool] and the fact that Tm is order-preserving. O
Rule 44 (Kan type formation). wbool typey,, [¥].
Proof. Identical to Rule 38. O

We already proved the computation rules in Rule 28. The elimination rule differs from that of
bool, however: the motive b.A must be Kan, because the eliminator must account and the proof
must account for canonical fcom elements of wbool.

Rule 45 (Elimination). If M=M" € wbool [¥], b:wbool > A=A’ typey,, [V], T=T" € Altrue/b] [V],
and F = F' € Alfalse/b] V], then ify o(M;T, F) =ify, 4 (M';T',F') € A[M/b] [¥].

Proof. This proof is analogous to the proof of Rule 41. First, we define a context-indexed PER
Dy (Mo, M()) that holds when [wbool]y (M, M) and the elimination rule is true for My, M/,. Next,
we prove that if Tm(®(W))(M, M') then the elimination rule is true for M, M’. Finally, we prove
that ® is a pre-fixed point of the operator defining B. (Here we must check that the elimination
rule holds for true and false, which are immediate by Rule 28.) Therefore Tm([wbool]) C Tm(®),
so the elimination rule applies to M = M’ € wbool [V]. O

5.10 Univalence

Recall the abbreviations:

isContr(C) := C x ((e:C) — (c:C) — Path_¢(c,c))
Equiv(A, B) := (f:A — B) x ((b:B) — isContr((a:A) x Path_g(app(f,a),b)))

Let 7 = pX"(v) or uP(v, o) for any cubical type systems v, o; in 7, when A=A’ typeye [V, 7 | x = 0],
B = B’ type, [V, ], E=E' € Equiv(A, B) [¥,z | x = 0], and ¢(Viny(M, N), Vin,(M’, N')) for

1. N=N'€ B [T,4],
2. M=Me€ AP,z |x=0], and
3. app(fst(E),M)=N € B [¥,z |z = 0],
we have 7((V,z),V.(A, B,E),V,.(A",B',E'), ¢).
Rule 46 (Pretype formation).
1. If A typeye [¥] then Vo(A, B, E) = A type,,. [V].
2. If B typeye [V] then Vi(A, B, E) = B typey. [V].

3. If A= A’ typeye [V | 7= 0], B= DB type
Vi(4, B, E) =V, (A, B, E') typeye [¥].

[¥], and E = E' € Equiv(A, B) [¥ | r = 0], then

pre

Proof. Parts (1-2) are immediate by Lemma 43. To show part (3), we must first establish that
PTy(7)(V,V,.(A, B, E),V,.(A', B, E'),~), that is, abbreviating these terms L and R, for all ¢y :
Uy — U and ¢ : o — Uy, Ly I Ly, Ry 4 Ry, 7H(Wa, Liva, Lita, ), 7H(Wg, Ritba, Rts, ),
and TU(\IIQ, Lit9, R12, -). We proceed by cases on the first step taken by Li; and L.
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.y = 0.
Then L)y ——g A1, Ripy ——g A'tpr, and the result follows by Aty = A’y typepye [W1].

. 7“1,[}1 =1.
Then Lty —g B, Ry —g B’11, and the result follows by B = B’ type

. rY1 = x and ry1Pe = 0.

Then L)y val, Lapipg — Awpiapg, Ripy val, Ryt — A'1p11ho, and the result follows by
Apripg = A'P1apa typepe [Pal.

. rY1 = x and ry1Y = 1.

Then L)y val, Liytps — Bip1ipe, Ripy val, Ryt — B'1p11he, and the result follows by
B = B’ type,,. [¥].

[0,

pre

pre

. ry =z and rY11hy = 2.

Then Lipy val, Lip1abg val, Repy val, Ryp1epa val, and by Aviaha = A'h1ys typeye [Pa | ' = 0],
Blﬁﬂ/)g = Blwlwg typepre [\Ifg], and Elbﬂ/)g = E%/Jﬂﬁg S Equiv(Az/leg, Bwl”l/)g) [\IJQ | .73’ = 0], we
have 7(Wa, Vo (A192, Bipriha, Eviibe), Var (A'h1ha, B'i1ipa, E'prapa), ).

To complete part (3), we must show Coh([V,(A, B, E)]), that is, for any ¢ : ¥ — U, if

[Vry (A, Bap, E)] (Mo, No) then Tm([V,y (A, B, E)]) (Mo, No). If rip = 0 this follows by
[Vo(Av, By, Ev)] = [Av] and Coh([Aw]); if r¢p = 1 then this follows by [V1 (A, By, Ev)] = [By]
and Coh([Bv]). The remaining case is [V, (A, By, EY)](Ving (M, N),Vin,(M', N")), in which
N=N e By V]|, M=M" € Ay [V | 2 =0], and app(fst(Ev), M) =N € By [¥' | x =0]. Again
we proceed by cases on the first step taken by the ¢ and 1119 instances of the left side.

1. l‘wl =0.

Then Lip1 —gg M1, Ry —g M)y, and the result follows by [Vo(Ayi)y,...)] = [Avi]
and My = M'yy € Ayapy [Uq].

. l’d)l = 1.

Then L)1 —g N1, Ry —g N'i1, and the result follows by [V1 (A, ...)] = [Byyi]
and N = N’ € By [V].

. 21 = 2’ and P19 = 0.

Then Ll/)l val, L’l,[)ﬂ/)g — M?,Z)ﬂﬁg, RT/Jl val, Rd)ll/}g — M/¢11/)2, and the result follows by
[Vo(Aaprapa, ... )] = [Aeprape]] and Maprapy = M'ip1ep € Ahaprahy [a].

. 2y = 2’ and xh1ehg = 1.

Then Ly val, Lip11pg — Nip1ibe, Rapy val, Rip11pg — N't)11)o, and the result follows by
[Vi(Apiprapa, ... )] = [BYyiye] and N = N’ € By [¥'].

.y = 2’ and z1epe = 2.

Then LT/Jl val, Lwl”l/}g val, Rwl vaI, Rlﬁﬂpg vaI, and by Nwlwg = leli/)g € B¢¢1¢2 [\112],
Mipiapg = M'op1apa € Apiprapy [¥o | 2" = 0], and app(fst(Eypipi1pa), M) = Nippapy €
By [y | 2" = 0], [Vor (Apipraba, .. )] (Vingn (Map1apa, Nep1aa), Vingn (M'h14pe, N'p11hg)). O
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Rule 47 (Introduction).
1. If M € A [U] then Ving(M,N) = M € A [¥].
2. If N € B [¥] then Vini(M,N) =N € B [¥].

3. IfM=M' €AV |r=0], NSN' € B[V], E € Equiv(4, B) [ | r = 0], and app(fst(E), M )=
N € B [U |r=0], then Vin.(M,N) = Vin,(M', N') € V,.(A, B, E) [¥].

Proof. Parts (1-2) are immediate by Ving(M, N) —g M, Viny(M,N) —g N, and Lemma 43.
For part (3), if r = 0 (resp., r = 1) the result follows by part (1) (resp., part (2)) and Rule 46. If
r = z then it follows by Coh([V.(A, B, E)]) and the definition of [V,(A, B, E)]. O

Rule 48 (Elimination).
1. If M € A [¥] and F € A — B [V], then Vprojo(M, F) = app(F, M) € B [V].
2. If M € B [¥] then Vproj, (M, F) = M € B [¥].

3. If M=M" €V, (A, B,E) V] and F =fst(E) € A — B [¥ | r = 0], then Vproj,.(M,F) =
Vproj,.(M',fst(E)) € B [V].

Proof. Parts (1-2) are immediate by Vproj,(M, F) —g app(F, M), Vproj, (M, F) —gm M, and
Lemma 43. For part (3), if = 0 (resp., r = 1) the result follows by part (1) (resp., part (2)),
Rule 3, and Rule 46. If » = x then we apply coherent expansion to the left side with family

app(Fy, Myp) i) =0
My ) =1
Nw x’(/) = [13’, Mlb U Vinx/(Ow,Nw)

where Oy € Ay [V | 2’ = 0], Ny € By [¥'], and app(fst(Ev),O0y) = Ny, € By [V | 2/ =
0]. First, show that if z¢p = 0, app(F¢, My) = (Nig, ) € By [¥]. By Lemma 38, M =
Ving (Oidy » Nidy) € Vz(A, B, E) [¥], so by Rule 47, My = (Oiq, )¥ € Ay [¥']. By assumption,
Fip =fst(Ey) € Ay — By [V']. This case is completed by Rule 3 and app(fst(Ev), (Oigy, )9) =
(Nidy)¥ € By [¥']. Next, show that if z¢p = 1, My = (Nig, )¢ € By [¥]. This case is
immediate by Rule 47 and M = Vingy(Oi4,, Nidy) € Vz(A,B,E) [¥] under ¢. Finally, show
that if z¢ = 2/, Ny = (Nig, )¢ € By [¥']. By M € V,(A,B,E) [¥] under idy,¢ we have
[Vz(A, B, E)]y(Ving (Oy, Ny), Ving ((Oidy, )¢, (Nidy, )¥)), completing this case.

By Lemma 41 we conclude Vproj, (M, F) = Nig, € B [¥], and by a symmetric argument,
Vproj, (M, fst(E)) =Ny € B [V]. We complete the proof with transitivity and Nig, =Ny, € B [V]
by [Va(A, B, E)[(Vin,(Ciay . Niay ), Vina (Ol . Ny, )- 0

Rule 49 (Computation). If M € A [V |r =0], Ne B[V, Fe A— B [¥ |r =0, and
app(F,M)=N € B [V | r = 0], then Vproj,(Vin,(M,N),F)=N € B [V].

Proof. 1f r = 0 then by Lemma 43 it suffices to show app(F, Ving(M,N)) =N € B [V]; by Rules 3
and 47 this holds by our hypothesis app(F, M) =N € B [¥]. If r = 1 the result is immediate by
Lemma 43. If r = 2 we apply coherent expansion to the left side with family

app(F, Ving(Mp, Nv)) xp =0
N1 xp =1 or x¢p = 2/
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If 21 = 0 then app(F, Ving(Mv, Nv)) = Ny € By [¥'] by Rules 3 and 47 and app(F, M) =N €
B [V |z =0]. If ¢ # 0 then N¢ € By [¥'] and the result follows by Lemma 41. O

Rule 50 (Eta). If N € V,.(A, B, E) [¥] and M=N € A [¥ | r = 0], then Vin,(M, Vproj,(N,fst(E)))=
N eV, (A, B,E) [¥].

Proof. If r = 0 or r = 1 the result is immediate by Lemma 43 and Rule 46. If » = x then by
Lemma 38, N = Vin,(M', P') € V(A,B,E) [¥] where M' € A [V | x = 0], P’ € B [¥], and
app(fst(E),M') = P' € B [¥ | x = 0]. By Rule 47 it suffices to show that M =M’ € A [¥ | x = 0],
Vproj,(N,fst(E)) = P’ € B [¥], and app(fst(E), M') = P' € B [¥ | x = 0] (which is immediate).
To show M =M' € A [¥ | x = 0] it suffices to prove N = M’ € A [V | z = 0], which follows from
N =Ving(M',P") € V4(A, B, E) [V] and Rules 46 and 47. To show Vproj, (N, fst(E)) = P’ € B [V],
by Rule 48 it suffices to check Vproj, (Ving (M', P'),fst(F)) =P’ € B [¥], which holds by Rule 49. [

Lemma 52. If A=A’ typex,, [V | x =0], B= B’ typexa, [¥], E=E' € Equiv(A,B) [¥ | z = 0],

N PN
1. & =r; =7} is valid,

2. M =M €V,(A, B, E) [¥],
8. Ni=N;j €Vy(A B, E) Y,y |r=rj,r; =1} for any i,j, and
4. Ni(r/yy =M € V4(A,B,E) [¥ | r; =1]] for any 1,

then

2. ifr =1 then hcomy (4 5.5 (M; & = y.N;) = M € Vo (A, B, E) [¥]; and

3. if 1y = v} then hcom{y" (4 g iy (M; & — y.Ni) = Ni(r' Jy) € Vo (A, B, E) [9].

Proof. For part (1), apply coherent expansion to hcom”vj(’:; B, E)(M ;& — y.N;) with family

heom’s! ™" (Mup; &b — y Niw) v =0
hcom”ﬁ””“ Y(Mp; &b — y.N;) R =1

(Ving (O(r' [y, hcom’;™™ (Vproj, (M, fst(E)); T)))¢  xp = 2’
O = hcom’,"Y(M; & — y.N;)
T = & — y.Vproj, (N;, fst(E)),
x =0 < y.app(fst(E),O),
z =1 y.hcomly” (Mm)

Consider 9 = idy. Using rules for dependent functions, dependent types, and univalence:
1.Oe AV, y|z=0]and O(r/y)=M € A [V |z =0] (by Vo(A, B, E) = A type,. [V | z = 0]).
2. Vproj,(M,fst(E)) € B [¥] where Vproj,(M,fst(E)) = app(fst(E),M) € B [¥ | x = 0] and
Vproj,(M,fst(E)) =M € B [V | x = 1].
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3. Vproj, (Ni, fst(E)) = Vproj,(Nj, fst(E)) € B [W,y | r; = 13,75 = r;] and Vproj, (M, fst(E)) =
Vproj, (Ni(r/y), fst(E)) € B [ | ri = rj].

4. app(fst(E),0) € B [V,y | x = 0], app(fst(F),O)= Vpl’O_]m(NZ,fSt( ) €B[Y,y|xz=0,1=r]
(both equal app(fst(E), N;)), and app(fst(E), O(r/y)) = Vproj,(M,fst(E)) € B [V | z = 0]

Nj
(both equal app(fst(E), M)).

5. hcomy; ¥ (M;& —y.N;) € B [,y | © = 1] (by Vo(A,B,E) = B type,. [¥ | z = 1]),
hcom’;™(M; & < y.N;) = Vproj,(N;,fst(E)) € B [V,y | x = 1,75 = 7] (both equal N;),
and hcomz™" (M; & — y.N;) = Vproj, (M, fst(E)) € B [¥ | x = 1] (both equal M).

6. By the above, hcom’;™" (Vproj, (M, fst(E)); ?) € B [¥] and hcomp = app(fst(E), O(r' /y)) €
B [¥ | 2 = 0], so Ving(O{r' /y), hcom’y™" (Vproj, (M, fst(E)); )) € V.(A, B, E) [¥].

When zt) = 2/, coherence is immediate. When z1) = 0, Vlno( (' /y),...) =hcomyy € AyY [V']
as required. When z¢p = 1, Viny(.. hcommfb . .;T)) = hcompy € By [¥'] as required.
Therefore Lemma 41 applies, and part ( ) follows by repeating this argument on the right side.

For part (2), show that Ving(O(r /), hcomy™" (Vproj, (M, fst(E)); T)) = M € V.(A, B, E) [U]

when r = /. By the above, Vin,(...) = Vinz(M Vproj, (M, fst(E))) € V,(A, B, E) [¥], so the result
follows by Rule 50.

For part (3), show Vin, (O’ /y), hcom’;™™ (Vproj, (M, fst(E)); T )= Ni(r'/y) € Vo (A, B, E) [¥]
when r; = r,. By the above, Ving(...) = Ving(N;(r' /y), Vproj, (N;(r' /y),fst(E))) € V4(A, B, E) [¥],
so the result again follows by Rule 50. O

Lemma 53. If A=A’ typey,, [V, y | 2 = 0], B=DB’ typex,n [V, y] E=F'¢ Equw(A B) W,y |x=
0], and M=M" € (Vo(A, B, E))(r/y) [¥] for x #y, then coe; (ABE)(M) coe V" ur g E,)(M’) €
(V2 (A, B, E))(r'/y) [¥] and coey T 4 p gy (M) =M € (V, (A4, B, E))(r/y) 9.

Proof. We apply coherent expansion to coe;”\jz/( AB E)(M ) with family

coegwAT[ V(M) T =
coe;?BV:; V(M) T =

(Ving (coey7" (M), comy 37" (Vroj, (M, fst(E{r/y))): T)))w b = a
T =1z =0 < y.app(fst(E), coe, ) (M)),
x—1<—>ycoeyB(M)

\

Consider 9 = idy.

1. Vproj, (M, fst(E(r/y))) € B(r/y) [¥] (by M € Vo(A(r/y),...) [¥]), Vproj, (M, fst(E(r/y))) =
a]pp(fst(E<?“/y>),M) € B{r/y) [V |z = 0], and Vproj, (M, fst(E<7“/y>))£M € B(r/y) [V |z
1].

2. app(fst(E), coe, ' (M)) € B [V,y | z = 0] because fst(£) € A — B [¥,y | 2 = (]
and coey_Ay( ) €ce AW,y |z =0] (by M € A(r/y) [¥ | x = 0]). Under (r/y) this
= app(fst(E(r/y)), M) € B(r/y) [V | z = 0].
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3. cer%y(M) €B[V,y|z=1] (by M € B(r/y) [¥ | x = 1]) and coe (M) =M € B(r/y) [¥ |
z=1].

4. Therefore comy, p € B( "Jy) [¥], comy p = app(fst(E(r’/y)),coe;j{"/(M)) € B(r'/y) [V |
z = 0], and com, p = coe} ;" (M) € B(r'/y) [¥ | x = 1]. It follows that Ving(...) €

Ve (A(r'/y), B{r ’/y> B [y)) 0.

When x1) = ', coherence is immediate. When x¢) = 0, we have Vino(cer%Av;r/w(Mw), )=

coe] "V (M) € Ap(r'y/y) [¥']. When a1 = 1, Viny(...) = coel'5 " Y (M) € By(r'v/y) [V].

Therefore Lemma 41 applies, and the first part follows by the same argument on the right s&e.
For the second part, coe;J” 4 p py (M)=Ving(coe] "y (M), com; " (Vproj, (M, fst(E(r/y))); T')) €

(Vz(A, B, E))(r/y) [¥], which equals Ving (M, Vproj, (M, fst(E(r/y)))) and M by Rule 50. O

Lemma 54. If A= A" typex,, [V,z |2 =0], B=DB typPexan (VU,z], E=FE' ¢ Equw(A B) ¥,z |
x = 0], and M =M € (Vo(A, B, E))(0/x) [¥], then coedy” (ABE)( ) = coed ! (. (M) €
(ValA, B, E)) ([} (8] and coell 4 s oy (M) = M € (Vo (4, B, E)){0/2) [9].

Proof. By Lemma 43 on both sides, it suffices to show (the binary version of)
Vin,: (M, coel 7" (app(fst(E(0/x)), M))) € (Vo(A, B, E))(r' /z) [P].

By Rule 46, M € A(0/z) [¥], so app(fst(E(0/x)), M) € B(0/x) [¥] and coe? "' (...) € B(r'/z) [¥].
Then M € A(r'/x) [¥ | 7' = 0] and coel 7y (...) = app(fst(E(0/z)), M) € B{r'/z) [¥ | v’ = 0] so the
first part follows by Rule 47. When ' = 0, Ving(M,...) =M € (V.(A, B, E))(0/x) [¥], completing
the second part. O

Lemma 55. If A=A typex,, [¥,z |2 =0], B=B typeKan [V, z], E=E' € Equiv(4, B) [V, z |
x = 0], and N=N'" € (V,(4,B,E))(1/z) [\IJ], then coel '(ABE)(N) coel Vf (N") €
(Va(A, B, E)(r'/z) [¥] and coe,y! 4 p py(N) =N € (V r(A B, E))(1/z) [V].

Proof. By Lemma 43 on both sides, it suffices to show (the binary version of) Vin,/(fst(O), P) €
(Vz(A, B, E)){r'/z) [¥] where

/
Vo (A, B! E)

O = fst(app(snd(E {1’ /z)), Coei%r (NV)))

1~sr! 1~sr!

P = hcom};] Br ,/x>(coe$ 7 (N);r" =0 < y.snd(O)Qy,r" =1 < _.coe, 5 (N)).
By Rule 46, N € B(1/z) [¥], so coel /' (N) € B(r'/z) [¥] and

O € (a:A(r'/x)) x Path_p( /0y (app(fst(E(r' /z)), a), coey 5 (N)) [¥].

Therefore snd(0)Qy € B(r'/x) [¥,y | ' = 0] and snd(0)@1 = coe' ' (N) € B(r'/z) [ | ' = 0],
so by B(r'/z) typeka, V], P € B(r'/x) [¥]. We also have fst(O) € A(r'/z) [¥ | ' = 0] and
app(fst(E(r ’/x}) fst(O)) =P € B(r'/z) [¥ | ' = 0] (by snd(0)Q0 = app(fst(E(r'/x)),fst(0)) €
B(r'/x) [¥ | v = 0]) so the first part follows by Rule 47. When 7’ = 1, Vini(fst(O),P) = P €
(Vo(A, B, E))(1/z) [¥], but P = coel7'(N) = N, completing the second part. O
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Lemma 56. If A=A typex,, [¥,z |2 =0], B=B tyPeKan (V,z], E=FE' € Equw(A B) [V, x|
x =0], and M =M € (V.(A,B,E))(y/z) [V], then coeyCT(ABE)(M) —coeva(A gy (M) €
(Vx(A?B7E))<T//$> [\II] and Coezt/z(A7B7E)(M) =M G( :E(AaBaE))Q//x) [ ]

,r,l

Proof. We apply coherent expansion to coe” V (AB E)(M) with the family coegf\jm&w’Bw,Ew)(Mw)
when yy = ¢ and (Vin, (fst(R), hcom}gwo/m (P(r'/x); T')))1 otherwise, where

O. = Vproj,,(coe 1 .y (M), fst(E (w/)))
P = com! 7 (Vproj, (M. fst(E(y/z))):y = € —+ w.0:)
Q:la] = (coe Yy . (@), ()com™ 3 (P(O/) (e /y); U))
U=2=0< y-app(fst(E(0/x)), coe, "y, (a), 2 = 1 = y.P({0/x)
R = app(app(snd(app(snd(E(0/z)), P(0/2))), QoM (0/1)]). Q1[(coel 3 4 s iy (M)){1/y)]) @y

T = y=¢c= _0(r"/w),y =1"— _Vproj.(M,fst(E(r'/z))),r =0 z.snd(R)Qz2.

Consider 9 = idy.

1. O. € Bw/z) [Y,w | y = €] by coefﬁf\“/:’(A’BE)(M) € Vy(Alw/x),...) [Y,w | y = ¢] (by
M e Vy(A{y/x),...) [¥]) and fst(E(w/x)) € A(w/z) = B(w/z) [¥,w | w = 0].

2. P € B[¥,z] by Vproj,(M,fst(E(y/x))) € B{y/x) [¥] and O (y/w)=Vproj, (M, fst(E(y/x))) €
Bly/z) [V |y =e¢].

3. Let C = (a":A(0/x)) x Path_pg/z) (app(fst(<E<0/x>),a’),P(O/x)). Then Q[a] € C [¥] for any

a € A{0/z)(e/y) [V] with y#a and P(0/z)(e/y)=app(fst(E{0/x){c/y)), a) € B(0/z)(e/y) [V],
because coe‘;:féo/@( a) € A{0/z) [¥] and by

(a) P(0/2)(e/y) € B(0/2)(c/y) [¥]
(b) app(fst(E{0/x)), coes . () € B(0/a) [¥],
(¢) P{0/)(e/y) = app(fst(E(0/x) (e/y)). coet 0y (a)) € BO/2)(e/y) [¥], and

(d) P(0/x) € B(0/z) [¥],
we have (z)com € Path_pg/y) (app(fst(E(O/x)),coezzzlzo/x)(a)), P{0/x)) [¥].

4. Qo[M(0/y)] € C [¥] because M(0/y) € A(0/x)(0/y) [¥] and P(0/x)(0/y) = Oo(0/w)(0/y) =
app(fst(E(0/x)(0/y)), M(0/y)).

5. Qul(coey ) 4 p gy (M))(1/y)] € C' [¥] because (CoeiVO(ABE)( N({1/y) € A(0/x)(1/y) [¥]
(by M(1/y) € B(l/x)(l/y) [ ) and P{0/x)(1/y) = O1(0/w)(1/y) which in turn equals
app(fst(E(0/x)(1/y)), (coe, ) 4 g1y (M))(1/1))-

6. R € C [V] because snd(app(snd(E(0/x)), <O/a:>)) ((e:C) = (¢:C) — Path_¢(e, ) [¥] and
we further apply this to Qo[M(0/y)], Q1[(coely V (AB E)( )){(1/y)], and y.

7. hcomleWO/x (P(r'[z); )6 B(r'/z) [¥] because
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(a) 0.0 Juw) € Bl fa) [¥ | y = €],

(b) Vproj, (M, ft(E{r' /1)) € B(r'/a) [¥ | y = '],

(c) snd(R)Qz € B(r'/z) [¥,z |7 = 0] by snd(R)Qz € B(0/x) [V, 2],

(d) P(r'/x) € B(r'/x) [¥],

() P{rJa) = 0o fu) € B[z [¥ | y =é],

(f) P(r'/x) = Vproj,. (M, fst(E(r' /x))) € B(r'/z) [¥ |y =],

(g) P(r'/z) =snd(R)Q1 € B(r'/z) [¥ | ' = 0] by snd(R)@1 = P(0/x) € B{0/z) [¥],

(h) O(r'/w) = Vproj,. (M, fst(E(r'/z))) € B(r'/z) [V |y =&,y =],

(i) Op(r'/w)y=snd(R)Qz € B(r'/x) [¥,z | y = 0,7 = 0] by snd(R)@z = snd(Qo[M(0/y)])Qz
= ((2)P(0/x)(0/y))@z = On(0/w),

(j) O1(r'Jw) =snd(R)Qz € B{r'/x) [¥,z | y = 1,7 = 0] because we have snd(R)Qz =

snd(Q1[(coe; VP 4 g gy (M))(1/y))Qz = ((2)P(0/x)(1/y))@z = O1(0/w), and
(k) Vproj, (M, fst(E(r'/x))) =snd(R)Qz € B(r'/z) [V,z | y = r',7" = 0] because snd(R)Qz
= snd(Qo[M{0/y)])@= = P{0/)(0/) = Vprol, (M, fst(E(y/))).

8. Viny(fst(R), hcomp/py) € Vo (A(r'/z),...) [¥] because fst(R) € A(0/x) [¥ | »' = 0],
hcom /5 € B{r'/x) [¥], and app(fst(E(r ’/:1:>),fst( )) = hcomp s /zy € B{r'/x) [V | r' = 0]

(by hcomp /2y = snd(R)@0).
When yiyp = 3/, coherence is immediate. When yiy» = e, we prove coherence by Rule 50,
using hcomB(rf/@ = Vproj,.(coeSy 4y (M), fst(E(r'/2))) € B(r'/z) [ | y = €] (by = O=(r' Jw)),

fst(R) =M € A(r'/z) [¥ |y =0, = 0] (by = fst(Qo[M(0/y)])), and fst(R) = coel° app) (M) €
Alr'jz) [P |y =1,7"=0] (by = fst(Ql[(coeif\jg(A7B7E) (M))(1/y)])). Therefore Lemma 41 applies,
and the first part follows by the same argument on the right side.

The second part follows by Rule 50, hcom g, /5y =Vproj,. (M, fst(E(r' /x))) € B(r'/x) [¥ | y = r'],
and fst(R) = M € A(r'/z) [V | y =+/,7" = 0] (as calculated previously). O

Rule 51 (Kan type formation).
1. IfA tyPekan [\II] then VO(Aa BaE) =A tyPekan [\Il]
2. If B typekan [¥] then Vi(A, B, E) = B typey,n [¥Y].

3. If A=A typeka, [V |7 =0], B= B’ typeka, [¥], and E = E’ € Equiv(A, B) [¥ | r = 0], then
VT(Aa Ba E) = V?“(A/) B,a E,) typeKan [\I’] °

Proof. Parts (1-2) follow from Lemma 43. For part (3), we check the Kan conditions.

(hcom) For any v : ¥ — W, consider a valid composition scenario in V,, (A, By, Ev). If
r¢ = 0 (resp., 1) then the composition is in Ay (resp., Biy) and the hcom Kan conditions follow
from Ay = A"y typekan [¥'] (resp., By = B't typeg,n [¥']). Otherwise, rip = x and the hcom Kan
conditions follow from Lemma 52 at Ay = A’y typexa, [V | x = 0], By = B’y typeka, [¥'], and
Evy = E' € Equiv(Ay, By) [V | = 0].

(coe) Consider any ¢ : (V' ) = ¥ and M =M’ € (V. (A, B, E))y(s/z) [V']. If rp = 0 (resp., 1)
then the coe Kan conditions follow from At = A"t typexa., [V, 2] (resp., By = B't typexa, [V, z]).
If ri) = y # x, then the coe Kan conditions follow from Lemma 53. Otherwise, i) = x; the result
follows from Lemma 54 if s = 0, from Lemma 55 if s = 1, and from Lemma 56 if s = y. O
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5.11 Composite types

Unlike the other type formers, fcoms are only pretypes when their constituents are Kan types. (For
this reason, in Section 3 we only close 7" under fcoms of types from TZ-Ka”.) The results of this
section hold in 7 = pK@"(v) for any cubical type system v, and therefore in each 7€ as well. In
this section, we will say that A,r; =, — y.B; and A, r; = r, — y.B] are (equal) type compositions
r ~ r’ whenever:

1. r; = r} is valid,
2. A=A typekan [\Il]v
3. Bi = Bj typegan [V, y | 7 = r{,7; = 1] for any i, j, and

4. Bi(r/y) = A typexan [¥ | r; = r]] for any i.

Lemma 57. If A,r; =1, — y.B; and A',r; = r, — y.B} are equal type compositions r ~~ r', then

1. PTy(T)(\I/,fcomT””"/ (Asry =71} — y.Bi),fcom”W’J(A’; ri =rl—=y.Bl), ),

2. if r =7’ then fcom™ " (A;r; = r} — y.B;) = A typeyan [¥], and

3. if r; =1} then fcom”™" (A;r; =71} — B;) = Bi(r' /y) typekan [¥].

Proof. Part (1) is precisely the statement of Lemma 48, applied to the context-indexed PER
{(¥, Ay, By) | 7(¥, Ay, By, )} instead of [S!](¥); as the fcom structure of these PERs is defined
identically, the same proof applies. Part (2) is immediate by Lemma 43. For part (3), if » =1/, the
result follows by Lemma 43 and B;(r/y) = A typekan [¥ | 7 = r}]. Otherwise, there is some least j
such that r; = 7’2». Apply coherent expansion to the left side with family

Ay = r'y
Bilr'fy)yd i # 7', v = vy, and Vk <y # 1.

If 7¢p = 1’9 then Bj(r/y)y = Ay typey,, [¥']. If 1) # 1'4, there is some least k such that r4 = 7.9;
then B (' /4 = Ber' /) typean (V). By Lemma 42, foom = B (1 /4) typecsy [, and part (3)
follows by B;(r'/y) = B;(r'/y) typekan [¥]. 0

Lemma 58. If

1. A,ri =71} — y.B; is a type composition r ~ r’,
2. M=M e AV,
8. Ni=Nj € Bi(r'[y) [V |ri=r},r; =1} for any i,j, and

4. cer’_”B*iT(Ni) =MecA[¥|r=r]] for any i,

then Tm([feom™ " (A;7; = 11 < y.B;)]) (box" (M 75 = 1 < N;), box™" (M'; 1 = r} — NJ)).

49



Proof. We focus on the unary case; the binary case follows similarly. For any v¢; : ¥1 — ¥ and
g 1 Wy — Wy we must show boxy; || X7 and [[fcom’"w"l(A; ri =71l y.Bi)]]ile (X112, boxip1)s).
We proceed by cases on the first step taken by boxt; and boxi)s.

1. 7“1[)1 = T‘/1/}1.
Then boxt)y —g My, [feom]y,y, = [A]y,y, by Lemma 57, and [A]} . (X192, Mp1¢bs) by
M e A [¥].

2. 1 # 11, mjh1 = riabr (where this is the least such j), and r¢1P2 = r'i11.
Then boxiy; — Njiby, boxi1py — M), and [fcom]y,p, = [A]y,y, by Lemma 57.
By B;(r'/y)11ps = A11pa typey,, [Wo] and Ny € Bj(r'/y)y1 [¥1] at idy,, ¢ we have
[AL, s, (X186, Njtrtha).  We also have [A]} , (Njhrtba, Mibripa) by (coel 57 (N;))vithy =

Muyipy € Atp1pg [Po] and (coe;/.“B?j”(Nj))wlwg = Ny € Aprapo [Us]; the result follows by
transitivity.

3. rih1 # 1, i1 = ripy (least such), rip1ye # r'i1epa, and iy = r;»wlng (least such).
Then boxtp; — Nji1, boxtpig — Njhi1apo, and [fecom]y, s, = [Bi(r’'/y)]y, ¢, by Lemma 57.
The result fOHOWS by Nﬂ/)l € Bi<1"//y>w1 [\111] and Niw1¢]2 = Njw1¢2 S Bi<7‘//y>1/)11/}2 [\I’Q]

4. ripy # 'y, riaby # riapy for all i, and rpy = 1911,

Then boxi); val, boxip1s —— M1piapa, [fcom]y,yp, = [Aye, by Lemma 57, and the result
follows by M € A [V].

5. mip1 # by, mihr # riph for all 4, vy # r'Prida, and rjhiipe = rithies (the least such j).

Then boxyy val, boxtp11hy — Njth1)a, [fcom]y, = [Bi(r’/y)]p1w, by Lemma 57, and the
result follows by N1t € B;i(r' /y)ii1pa [Ta].

6. rh1 # 1’1, mipr # iy for all 4, and rip1the # r'Piibe, and rivibe # i1y for all ;.
Then boxi; val and boxi11p, val, and the result follows by the definition of [fcom]. O

Rule 52 (Pretype formation). If A,r; = r, — y.B; and A',r; = r} — y.B, are equal type composi-
tions r ~ ', then

1. feom™ " (A;r; = 1 < y.B;) = feom™ " (A'; 1y = v} — y.B)) typeye [V,

2. if r =1’ then fcom™ " (A;r; = v} — y.B;) = A type,. [¥], and

pre

3. if r; =1} then fcom™ "' (Asri = ri = B;) = Bi(r'/y) typey. [V].

Proof. For part (1), by Lemma 57 it suffices to show Coh([fcom]). Let [fcom]y (Mg, Ng) for any
U — W, If rp = r/¢p then Tm([fcom]) (Mo, No) by [fcom]sp = [A]y) and Coh([A]). Similarly, if
ritp = ri) for some ¢, then Tm([fcom])) (Mo, No) by [fcom]ip = [B;i(r' /y)] and Coh([B;(r'/y)¥]).
If r¢p # 'y and ritp # riep, then My and Ny are boxes and the result follows by Lemma 58.

Parts (2-3) are immediate by Lemma 57. O

Rule 53 (Introduction). If
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1. A,r; =71, = y.B; is a type composition r ~» 1/,
2. M=M e Al
8. Ni=Nj € Bi(r'[y) [V |ri =r},r; =1} for any i, ], and
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4. coeg_gj(Ni) =MecA[¥|r=r]] for any i,

1. box™" (M;r; = 1) < N;) = box™" (M';1; = r} < N!) € feom™™" (A; s = 1) > y.B;) [¥];

2. if r =1/ then box™" (M;r; = r} — N;) = M € A [¥]; and

3. if r; =1} then box“”"/(M; ri =71l = N;)=N; € Bi(r'/y) [V].

Proof. Part (1) is immediate by Lemma 58 and Rule 52; part (2) is immediate by Lemma 43. For
part (3), if 7 = 7/, the result follows by Lemma 43. Otherwise, there is a least j such that r; =17,
and we apply coherent expansion to the left side with family

M rp=1"9
N rip # ', rip = 1), and VE < k, i # 1,9

If r¢p = r'¢p then My =N;¢p € Bi(r' /y)v [¥'] by M1j}i(coe;/_§f(]\7j))¢ e Ay [P, (Coegigf(Nj))@Z)i
Ny € Bi(r'/y)y [¥'], and B;(r'/y)yp = Ay typex,, [¥']. If rip # 'y then Nyyp = Njop €
Bi(r' Jy)y [¥'] by Ny = Njp € Bi(r' Jy)yp [¥'] and By = B type,, [P, y]. Thus by Lemma 42
we have fcom = N; € B;(r' /y) [¥], and part (3) follows by N; = N; € B;(r'/y) [V]. d

Rule 54 (Elimination). If A,r; =1, — y.B; and A',r; =r} — y.B] are equal type compositions
1! and M = M’ € fcom™" (A;r; = 1) < y.B;) [¥], then

1. cap“’“’"/(M; ri =71l —=y.B;)= cap””"/(M’; ri =ri—=y.Bl)eAl¥]);

2. if r =1' then cap™" (M;r; = 1} < y.B;) = M € A [V]; and

3. if ry =1 then cap™" (M;r; = 7 < y.B;) = cer’_”B:T(M) € A [¥].

Proof. Part (2) is immediate by Lemma 43 and Rule 52. For part (3), if 7 =/ then the result
follows by part (2), B; typekan [V, y], and B;(r/y) = A typeka., [¥]. Otherwise, r # 7’ and there is a
least j such that r; = r;-. Apply coherent expansion to the left side with family

M ri =1y
coe;'_ﬁ;;w(Mw) T # 1), Tty = riab, and Vi < k,rinp # vl

When 7”¢ = lea (Cer,EJT(M))¢:M¢ € Aw [\III] by M e Bj <’I"//y> [\Il] (by Rule 52)7 Bj typPekan [\117 y]a
and Bj(r/y)i = A typex,, [V']. When ¢ # r'¢) and riyp = 7.9 where k is the least such, we
have (coe} 57 (M))¢) = coel 41" (M) € Ay [W'] by Bjih = Byip typeya (W', y] and B{r/y)p =
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At typekan [P']. We conclude that cap = coey B, "(M) € A [¥] by Lemma 41, and part (3) follows
by coe; ””“(M) = coe] “B“"( ) € A Y]

For part (1), if r = 7" or r; = r} then the result follows by the previous parts. If r # r’ and r; # 7/
for all 7, then for any v : W/ — W, My = box”"“rl(Ow;fizZ) > N ) € fcomyp [¥'] by Lemma 38.
Apply coherent expansion to the left side with family

Mo r =1’
coel 57V (MW) 1 £ 1", b = riap, and Vi < jridh # iy
o rip # v’ and Vi, riah # riy

where M1 |} box”pwr,w(Ow; m)

When r¢p = r'tp, Mp=(0Oiq, )t € A [V'] because M1p=boxi) € fcomy) [¥'], fcomip= A1 typey,, V']
(by Rule 52), and boxi) = (Oigy, )9 € fcomip [¥'] (by Rule 53). When r¢) # r'¢ and ;¢ = 1) where
j is the least such, (Oiq, )¢ = coe;, }g”:fp(Mw) € Ay [¥'] because M1 = (Njiq, )V € Bj(r'/y)uv [¥]
(by Rules 52 and 53) and Oiq, = coe; B (Njjdy) €AY [rj =7 %]. When 11 # 7't and ;%) # iz for
all i, (O, )¢ = Oy € At [¥] by [feom]((box"" (Oiay s & — Nijiay )%, box™ " (Oy; &b — Niy))

(by M € fcom [V] at idy, ). Therefore cap = Ojq, € A [¥] by Lemma 41, and part (1) follows by a
symmetric argument on the right side. O

Rule 55 (Computation). If

1. A,ri =71} = y.B; is a type composition r ~ r',
2. M=M e AW,
8. Ni=Nj € Bi(r'[y) [V |ri=r},r; =1} for any i, ], and

4. cerET(N) Me AV |r;=r]] for any i,

then cap”™™" (box™™" (M;r; = 1, < N;);ri = v — y.B;) = M € A [¥].

Proof. By Rules 53 and 55, we know both sides have this type, so it suffices to show [A]¥(cap, M).
If 7 = 7' then cap — box — M and [A]Y(M, M). If r # 7' and r; = r} where i is the least
such, then cap — coe;/”B*:(box), and [[Aﬂll(coeg B, (box), M) by box = N; € B;(r'/y) [¥] and
coe; Bl (Ni) =M € A[¥]. If r # 7" and r; # r; for all i, then cap — M and [A]¥ (M, M). O

Rule 56 (Eta). If A, & — y.B; is a type composition r ~ 1’ and M € fcom™™ " (A; & — y.B;) [V],
then box™ " (cap™ " (M; & < y.B;); & — M) = M € fcom™" (A: & — y.B;) [¥].

Proof By cap™™" (M;& < y.B;) € A [¥] (by Rule 54), M € B;(+'/y) [¥ | r; = /] (by Rule 52),
coe; B (M) =cap € A [V |r; =r] (by Rule 54), and Rule 53, we have box € fcom [¥]. Thus,
by Lemma 37, it suffices to show [fcom]¥(box, M). If r = 7/ then box — cap — M and
[fcom[¥ (M, M). If r # +' and r; = 7/ for the least such i, then box — M and [fcom]¥ (M, M). If
r# 1" and r; # 7} for all i, then M |} box™" (O; & — N;) and M =box " (0; & — N;) € fcom [¥].
The result follows by transitivity and Rule 53:
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1. cap™ " (M; & — y.B;) =0 € A [¥] by Lemma 37 and cap —* O,

2. M =N € Bi(r'Jy) [¥ | r; = /] by M =box""" (0;& — N;) € fcom [¥] and Rule 53, and
3. cer’_”B*iT(M) = cap"™ " (M;& — y.B;) € A [U | r; = /] by Rule 54 as before. O

Our implementation of coercion for fcom requires Kan compositions whose lists of equations
might be invalid (in the sense of Definition 21), although Kan types are only guaranteed to have
compositions for valid lists of equations. However, we can implement such generalized homogeneous
compositions ghcom using only ordinary homogeneous compositions hcom.

Theorem 59. If A= B typex., [¥],
1. M=M e A[Y],
2. Ni=Nj € AV, y|ri=r},r;=r}] for anyi,j, and

3. Ni(rJy)=M € A [V |r; =r}] for any i,

1. ghcom’y™ (M7 = 1 < y.N;) = ghcom’y™ (M'; 1y = v} — y.N!) € A [¥];

2. if r =r' then ghcom’”" (M;r; = r} — y.N;) =M € A [¥]; and

3. if ri = v then ghcom’y™ (M;r; = ! < y.N;) = N;(r' Jy) € A [U].

Proof. Use induction on the length of r; = r}. If there are zero tubes, for part (1) we must show
ghcom’;™"™ (M; ) = ghcom’;™™ (M’;-) € A [¥], which is immediate by Lemma 43 on each side. Part
(2) is immediate by Lemma 43 on the left, and part (3) is impossible without tubes.

Now consider the case ghcom"AWr/(M; s =38 — y.N,& — y.N;), where we know ghcoms with
one fewer tube have the desired properties. By Lemma 43 we must show (the binary version of)

hcomrAW’J(M; s=e—z2T.,s=5 —<yN§E —yN;) €AY

where T, = hcom’,"*(M;s' = e < y.N,s' =& < y.ghcom', "V (M; & — y.N;), & < y.N;).
First, show T. € A [¥, z | s = €] by Definition 22, noting the composition is valid by s’ =¢,s' =,
1. Me AW |s=¢]by M € A[Y],

2. NeAV,y|s=¢,8=¢|] (by Ne A[¥,y|s =5, because s = s’ whenever s =¢,s =¢),
N=N, e AWy|s=c¢5 =¢cri=r]](by N=N, € A[V,y|s=¢5,r=r]),and
N{r/yyp=M e AV |s=¢,8 =¢] (by N(r/y)=M € A [¥|s=15), and

3. ghcom'\"Y(M; & — y.N;) € A W,y | s =, =¢| (by part (1) of the induction hypothesis),

ghcomy =N; € A [W,y|s=c¢,s =%, =7} (by part (3) of the induction hypothesis), and
(ghcom 4)(r/y) =M € A [V,y | s =¢,s =] (by part (2) of the induction hypothesis).
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The remaining adjacency conditions are immediate. To check hcom4 € A [V] it suffices to observe
that T, € A [V, z | s = €] (by the above); T.=N{(z/y) € A[¥,z | s =¢,s = §'| (by the s = £ tube in
T.); T. = Ni(z/y) € AU,z | s =¢,r; =7} (by the r; = r} tube in T;); T.(r/z) =M € A [V | s =¢]
(by 7 = z(r/z) in T.); and the s = ¢ tubes ensure the composition is valid. Part (1) follows by
repeating this argument on the right side, and parts (2-3) follow from Definition 22. O

Theorem 60. If A= B typex., [¥,],
1. M =M e Alr/y) [¥],
2. Ny=N;€ AV, y|r=rjrj=r1} for anyi,j, and
3. Ni(r/y) =M € A(r/y) [V | ri = ri] for any i,

then

1. gcom’"“” (M;ri =rf = y.N;) = gcomg”l}’" (M'sr; =71l — y.N!) e A(r' /y) [V];

2. if r =1 then gcom " (M3 = rj = y.N;) = M € A(r/y) [¥]; and

3. if ri =r} then gcom"””" (M;r; =1l — y.N;) = Ni(r' Jy) € A(r' Jy) [¥].

Proof. The implementation of gcom by ghcom and coe mirrors exactly the implementation of com
by hcom and coe; the proof is thus identical to that of Theorem 44, appealing to Theorem 59 instead
of Definition 22. I

Lemma 61. If A, s; = s — 2.Bj and A',s; = 5 — z. B are equal type compositions s ~ s’ and,
letting fcom := fcom®™* (A;s5 = sj — 2.Bj),

_ N\

1. ri = r} is valid,
2. M = M' € fcom [¥],
3. N;= N/, € fcom [U,y | r; = 7}, vy = 7,] for any i,7, and

4. Ni(r/y) =M € fcom [¥ | r; = r}] for any i,

1. hcomior (M;r; =1l — y.N; = hcom™"’
fcom( ' Y ) fcoms™s’ (Alssj= s —z. B’)

(M';r; =71} < y.N!) € fcom [V];

2. if r =r' then hcomiJ" (M;r; = r, < y.N;) = M € fcom [¥]; and

fcom

3. if ri =7l then hcomi™ (M r; = ri — y.N;) = N;(r'/y) € fcom [T].

fcom
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Proof. 1f s = 5" or s; = s} for some j, the results are immediate by parts (2-3) of Lemma 57.
Otherwise, s # s’ and s; # s;- for all j; apply coherent expansion to hcomseom with family

(heom’y, ™ (Msriy = rib < y.Nity) st) = 8'p
hcom wa/;ﬂ (Mp;rinp = riap — y.Njyp) s # '), least sj1p = si1p
(box*™ (@s 57 = 5, = Py{s'/2))u s 5, Vs £ 55

pP; = hcomrBj’” (coe? EZ(M) TP =T Y. CO@?EZ(N i)
Flc] = hcomiwz(capsws (c;85 = s- — 2.Bj); T)

—\
SWZ

T =s;= s — 2 .coe’ §S(coez B; ()

O = hcom’y™™ ((F[M])(s/2);ri = r} = y.(F “[Ni]){s/2))
Q = hcom¥™* (O;r; = 1) — 2. FINi(r' Jy)], )

—\

U=sj=s; <—>zcoez“]35(P) r=r"< z.F[M]

Consider 9 = idy.

1. Pj=Py € B; [V, 2| s; =s),s; = s)] for all j,j', by

]7

(a) Bj = Bjs typexan [V, 2 | 55 = 8}, 55 = 8],

(b) coet 57 (M) = coe 52 (M) € By [W.2 | 5; = 5, = sl by feom = By(s'/2) typeic [¥ |
SJ - S]]

(c) coe’ EZ(N) = coe? EZ(NZ-/) € B [V,z,y|s; =s},85 =s,ri =rj,ry =] for all 4,7,
and

(d) coeigz(M) —coeﬁgz( i(r/y)) € B; W,z | s5j = s
M = N(r/y)éB( /z> (W, 2| 55 = s}, =1}

/ _ / _ / .
G Sj = Shuri = ri] for all ¢ by

2. Fle] =F|d] € A [Y,z] for any ¢ = € fcom [¥], by

(a) cap®¥(c; 55 = sj < z.Bj) = cap*~ ¥ (c; 55 = sy z.Bj) €A [\IJ]
(b) coed 5 eoel 57 (6) = coe s (coel () € A [0,/ ;=

fcom = B;(s'/2) typekan [V | 55 = )] and Bj(s/z) = A typeka, [V | s; = )], and

Ly s = ] for all 7,7 by

(c) (coe? Es(coei EZ( (/2" = cap®™'(c; 85 = si < 2.Bj) € AV | s; = 5] for all j
because both sides = coeilgf(c).
3. O € A|[¥Y] by

(a) (F[M])(s/z) € A [¥] by M € fcom [V],

(b) (F[Ni])(s/z) = (F[Ny])(s/z) € AW,y | ry = ri,ry = r,] for all i,7’ by N; = Ny €
fcom [V, y | r; = 7,7y = 7], and

© (PN (2) = (P o/ € 418 | =] ol by i) = € feom 19

4. Q € A [¥] by
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(a) FINi(r'/y)|=F[Nu(r'Jy)] € A,z | r; =1}, riy =r}] forall i, by Ni(r'Jy)=Ny(r'/y) €
fcom [V | r; = 7%,y = 7),],

(b) coeﬁ”gs(P)—coej”gs(P)EA[\IIz|sJ—s sy = syl by P;=Py € By [V,2 | s; =

8%, 51 —s],]

(c) F[ €AY,z |r=1"] by M € fcom [V],

(@) O A,

(e) (FINi(r"/y))(s/z) =0 € A [¥ |r; =71} for all 4,

(f) (coej_”];j (Pj))(s/2)=0 € AV | s; = s7] for all j, because the left side (coei%j(f?))(s/z)i

J
By(5/2) = A typeyan [V | 55 = ], coe 5°(M) = (FIM])(s/2) € A [¥ | 5; = ] (because
the right side = coel;’ (coe?’ B; (M))), and coeiIES(N) = (F[N;])(s/z) € A [V | s; =
s, = r;] for all i (because the right side = coel g’ (coe?’ ES(N )))s
(g) (F[M])(s/z) =0 € A[¥|r=r1],
(b) F[Ni(r'/y)] = coel 5 (P) € A [¥, 2 | ry =
coez 3 (coel 5 (N, (r'/y)).
(i) FIN;(r'/y)|=F[M] € A[¥,z|r;=rl,r=7r]foralliby N;(r'/y)=M € fcom [¥ | r; = r}],
and
(i) coez3(Py) = FIM] € A [0,z | s; — s

coeZ ' (coel 57 (M)).

hcomgﬁ(’;’/@(coezi“B“;(M);r, 7l y.coed 5 (Ni)) € AV | s; = sj], and this = O by

ri,s; = sj] for all i,j because both sides =

J,r = ¢/] for all j because both sides are =

5. box*"*(Q; 55 = s < P;(s'/z)) € feom [¥] by Q € A [W], Pi(s'/2) = Pyu(s'/2) € Bj(s'/2) [¥ |

8,851 = 8 ]forallj] andcoesws( i(s'/2)) =Q € A [V | s; = 8] for all j.

When st # st and s # sjw for all j, coherence is immediate. When sy = s'1), boxy =
Qv = Oy = heom’}™"V (Mp; & — y.Nw)) € Ap (W] by (F[M])(s/2)v = M) € Ay [¥'] and
similarly for each tube When sy # 5"y and s;3) = 5’9 for the least such j, boxy) = P;(s'/z)1) =
(hcom?;7 .y (coel 5= (M); s = 1} — y.coel 5= (N:)))ib = (hcoml "l oy (M rs = 7 = y.Ni))ib. By
Lemma 41, hcom¢om = box € fcom [¥]; part ( ) follows by a symmetric argument on the right side.

For part (2), if r = 7/ then Q = (F[M])(s'/2) = cap*~* (M;s; =s; = 2.B;) € A [V] and
Py(s'/2) = coet 5 (M) = M € By{s'/2) [¥ | 55 = /] for all j, s0 box™™ (Qi 5, = s, = Py(s'/)) =
M € fcom [¥] by Rule 56, and part (2) follows by trans1t1v1ty

For part (3), if r; = 7} then Q = (F[N; (' /y)])(s' /2) = cap®~* (N;(r "fy)is; = s; = 2.Bj) € A[Y]
and P;j(s'/z) —coes =S (NG (r Jy)) = Ni(r' ) € Bj(s'/z) [V | 5; = s] for all j, so box = N;(r'/y) €
fcom [¥] by Rule 56, and part (3) follows by transitivity. O

S5 =

Lemma 62. Let fcom := fcom®™ (4; s; = sh— z.B;). If

N

1. s; = s is valid in (¥, x),

2. A=A tyPekan [@7 x]7
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8. Bi = B} typegan [V, 7,2 | s; = s}, 8 = 8] for any i, 7,
4. Bi(s/z) = A typexan [V, 2 | si = 8] for any i, and
5. M =M’ € fcom(r/x) [¥],

1. coe” " (M) = coe”™" ———— (M) € fcom(r'/z) [V]; and

’
x.feom z.fcom®% (Als;=s}—2.B])

2. if r =1 then coe” ;" (M) = M & fcom(r'/z) [¥].

x.fcom

Proof. If s = §' or s; = s, for some 4, the results are immediate by parts (2-3) of Lemma 57.
Otherwise, s # s’ and s; # s, for all i; apply coherent expansion to coe” " (M) with family

z.fcom
coe;wg;r V(M) s = sy
coe ”/JWZ fﬁz (M) s # §', least siyp = sl
(box™*'(R; S Qis '/Z>))<T'/w>w s # 8", Vi.sip # sy

N; = coezB #(coel Bi(s ,/Z>(M))

0= (hcomf{*'z(capsws (M;& — 2.B;); & — z.coel 5 (N;)))(r/z)

P = geom” " (O(s{r/z)/2); & — ©.Ni(s/z)| @#e)s 1)

T=s =5 — 2.c0el 5 (M) o)

Qr = gcom’ st /ZC o (P & = 2.Ni(r' [x)|(pppey, = 1" = 2.Np (1’ /)

R= hcomsws (P; 51 — z.coel 3 (Q;),r =71 = 2.0)

Consider 9 = idy.

1. N;=N; € B; [V,z,z | &(r/x),&(r/x)] for all i,j by M € Bi(s'/z)(r/z) [V | &(r/z)] (by
M € fcom(r/x) [¥] and fcom = B;(s'/z) typexan [V, z | &]) and B; = Bj typexa, (¥, z, 2 | &, &l

2. O € A(r/x) [¥, 2] by

(a) (cap®* (M;& — 2.B;))(r/z) € Alr/z) [¥] by M € fcom(r/z) [¥],
(b) coeX (/5 (Ni(r /) = coel 1) (Nj(r/2) € Alr/a) [, 2| &(r/a), &(r/a)] for all 4, j
by Bi(s/z)(r/x) = A(r/z) typekan [V | &i(r/x)], and

(c) (cap® ' (M;& — 2.B;))(r/x) = (coeZ 5 (Ni))(s'/2) (r/x) € A(r/x) [ | &(r/z)] for all

i by cap(r/x) = (coel 5 (M))(r/z) € Alr/z) [¥ | &(r/a)] and Ni(s'/2)(r/z) = M €
Bi{s'/2)(r/z) [¥ | &(r/z)]

3. P e A{r'/x) [¥] by

(a) O(s(r/z)/z) € A(r/z) [¥],

(b) Ni(s/z)=Nj(s/z) € AW,z |&,&;| for all i, j such that x #&;,&; by Ni(s/z) =N;(s/z) €
Bi(s/z) [V, | &i(r/x),§(r/x)] and Bi(s/z) = A typegan [V, = | &,

(c) co(eg/”jj;](M) AW,z |s=¢]if x#s,s by fcom(r/x) = A{r/z) typexa, [V | s(r/z) =
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(d) O(s (r/x)/z>:Nz<s/z><r/x> € A(r/x) [V | &] for all i such that x # & by O(s(r/x)/z) =
(coel i (Ni))(s/z)(r/x) = Ni(s/z)(r/z) € Alr/z) [V | &(r/z)],

Ni(
() O(s(r/w)/z) = (coe, i (M))(r/x) € Alr/z) [V | s = s]if x4 s.5" by Ols{r/z)/2) =
O(s/z) =cap(r/z) =M € A(r/z) [¥ | s = §'], and

(f) N, <3/z> =coel JF(M) € AW,z |&,s= 5] for all i such that x # &, s,s by Ni(s/z) =
coe’; < /Z>( ) € Bi(s'/z) [W,z | &,s = 5] and B;(s'/z) = A typexan [V, 2 | &, s = &)

4. Qr = Qp € Br(r'[x) [V, 2 | &(r'/x), §p (v /)] for all k, k" by

(a) P € Bi(s/2){r" /1) [0 | &(r' /)] by A= Bels/z) typex [T, | &,

(b) Ni(r'/z) = N;(r'/x) € Bp(r'/z) [¥,z | & (r'/z), &, &;] for all 4, j such that x # &, & by
N;=Nj € B; [V,z,2 | &,&] and B; = By, typexa, [V, 2, 2 | &, &kl

(c) Ni(r'/z) = Np(r'/z) € Br(r'[z) [V, 2 | & (r' /), & (r' /)],

(d) P = N;(s/2)(r'/z) € Br(s/z){r"/x) [¥ | &(r'/x),&] for all i such that = # & by P =
Ni(s/z)(r'Jz) € A(r'/x) [V | &] and A(r'/z) = By (s/2)(r'/x) typekan [V | &i(r'/2)],

(e) P = Ni(s/2)(r'/x) € Bi(s/z){r'Jx) [¥ | &(r'/x),r = r'] because P = O(s(r/x)/z) =

(coeZ 7 (Nk))(s(r/x)/z)(r/z) € A(r'[z) [V | &(r'/z),r = 1"], and

(f) Ni(r'/x) = N(r'Jz) € Bp(r'Jx) [V, z | & (r'/x), &, r = '] for all i such that z # &;.

R(r'/z) € A(r'[z) [V] by
(a) P € A(r'/z) [V],
(b) coezwsé ﬁi(Q ) = cerWS (QJ) € A(r'/x) [V, z | &(r'/x),&(r'/x)] for all 4,5 by
B; = Bj typekan [V, 2,7 | fufy] and B;(s/2)(r'/z) = A(r'/z) typexan [V | &(r'/2)),
(c) O € A(r'/x) [¥,z | r=17],
(d) P = (coel 5 (Qi))(s/2)(r'[x) € A(r'[x) [¥ | &(r'/x)] for all i by Qi(s/z){(r'/z) =P €
Bi(s/2)(r' Jz) [W | &(r' )] and Bj(s/2)(r' /x) = A(r" |} typewon [¥ | &1 /2)],
(e) P=0(s/2){r'/z) € A(r'/z) [V | r = 1] by O(s/z)(r'[z) = O(s(r'/z)/z), and
(f) (coel 5 (Qi))(r "x) =00 /x) € A" /x) [V, z | &(r'/x),r = '] for all i by O(r'/z) =
O=(eos (M) € Al 8,21 &)l e Q' )= ) € Al ) 9.

6. box*T /AT E (R 1) €i(r [y — Qils' (1 [x) ) 2)) € fcom (1! /) [W] by

(a) R(r'/z) € A(r'/x) [¥],

(b) Qi(s'(r'/x)/z) = Qj(s'(r'/x)/2) € Bi(s'/2)(r' /) [¥ | &(r' /), &;(r' /)] for all 4, j, and

(c) (coel 52(Qils' /)1 fx) = R(r'[x) € Alr'/x) [¥ | &(r'/x)] for all i by R(r'/z) =
(coeZ 35 (Q0))('/2)(r' [x) € A [} [ | &(r' /).

Consider ¢ : ¥/ — W. When syp # s'¢p and s;9p # siyp for all 4, coherence is immediate.
When sy = s'4, then by s # s, we must have = # s,s' and thus s(r'/x)yp = §'(r'/z)1) also.
Thus box(r'/z) = R(r' Jx)y = P(r' [z} = (coel T (M))(r' /z)p € A(r'/z) [V'] as required. When
sy # s and s;¢b = st for the least such 4, again = # s;, s, and box(r'/z)) = Qi(s'/z)(r' Jx))p =
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Ni(s'[2)(r' Jx)p = (coe””l (M) € A(r'/z) [¥']. By Lemma 41, coe’ 3" (M) = box(r'/z) €

x.Bji(s'/z) x.fcom
fcom(r’/x) [¥]; part (1) follows by a symmetric argument on the right side.
For part (2), if r = 7/ then R’ /z)=0(s' /2)(r' Jx)=(cap®™* (M; & < 2.B;)) (' /) € A{r' [z) [¥]
and Q;(s'/2)(r' Jx) =Np(s'/2)(r' Jx)y =M € B;(s'/z)(r'Jz) [V | & (r'/x)] for all i, so box(r' /z) =M €
fcom(r’/z) [¥] by Rule 56, and part (2) follows by transitivity. O

Rule 57 (Kan type formation). If A,r; =1} — y.B; and A',r; = v} — y.B. are equal type compo-
sitions r ~» ', then

1. fcom"””’l(A; ri =71 = y.B)= fcomTWTl(A’; ri =i <= y.Bl) typekan [¥],

2. if r =7’ then fcom™ " (A;r; = rl — y.B;) = A typeyan [¥], and

3. if ry = 7 then feom™" (A;r; = 1} < By;) = Bi(r' /) typexan [¥].

Proof. We already showed parts (2-3) in Lemma 57. For part (1), the hcom conditions follow from
Lemma 61 at fcom) for any v : ¥/ — W; the coe conditions follow from Lemma 62 at x.fcom) for
any ¢ : (¥ x) — . O

5.12 TUniverses

Our type theory has two hierarchies of universes, Z/ljpre and U]Ka“, constructed by two sequences

T]Pre and T]Ka"
system 75, we must analyze these sequences as constructed in Section 3.

of cubical type systems. To prove theorems about universe types in the cubical type

Lemma 63. If 7,7’ are cubical type systems, 7 C 7', and 7 |E J for any judgment T, then 7" = J.

Proof. The result follows by PTy(7) C PTy(7’) and the functionality of 7,7’; the latter ensures that
any (pre)type in 7 has no other meanings in 7’. O

Lemma 64. If 7 is a cubical type system, A tm [V], B tm [¥], and for all 1 : V1 — ¥ and

o Wo — Wy, we have Ay | Ay, A1po |} Ao, A1ape || A1g, By || B, Bie || Ba, By1ipo || Bio,
T ‘— (AQ Alg type [\1’2]), T ): (B2 B12 type [\1’2]), and T ): (A2 BQ type [\IIQ]), then
7 | (A= B type, [¥]).

Proof. We apply coherent expansion to A and the family of terms {A,L‘I/)’/ | Ay |} A\III};I/;J/ By our
hypotheses at 1, idy and idy, idg we know 7 |= (Aq\/Ij, type,, [¥']) and 7 = ((A Id‘p)d) type,, [¥']); for
any ¢’ : ¥/ — W'  our hypotheses at 1,9’ and idy, ¥’ show 7 | (A’ = AtW’ type,, [¥”]) where
(A;iﬂ)wl JA and 7 = (A= A‘I’", type,. ["]) where (A.‘gq,)%bw/ J A" hence T = (A'=A" type,, [¥"]).

If k = pre then by Lemma 36 TE((A qu})@[) Ap typeye [V']) where (A;g\”d; | Af; thus we
have 7 = (Ag/ = (A qul)w typeye [¥]) by transitivity, and by Lemma 40, 7 |= (A = Ag typeye [P])

where A |} Ap. If kK = Kan then by Lemma 39, 7 = (Ai’ = (A qu})qb typekan [¥’]), and by Lemma 42,
T = (A= Ap typekan [V]) where A || Ap. In either case, we repeat the argument for B to obtain
T = (B = By type,, [¥]) where B | By, and the result follows by symmetry and transitivity. O
Rule 58 (Pretype formation). If i < j or j = w then T]pre = (U] typeye [V]) and T]Ka” =
(uiKan typepre [\II])
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Proof. In each case we have PTy(Tf’)(\I',Uf,Z/{f,,) by U valp and the definition of TJ’I‘/. For
Coh([UF]), show that if [UF]w (Ao, Bo) then Tm([UF](P'))(Ao, Bo). But Tm([UF](T))(A, B) if
and only if PTy(7/)(¥’, A, B, _), so this is immediate by value-coherence of 7/°. O

Rule 59 (Cumulativity). If 75 | (A= B € U [¥]) and i < j then 757 | (A= B € U} [P]).

Proof. In Section 3 we observed that 7* C 77" whenever i < j; thus [Uf] C [U], and the result
follows because Tm is order-preserving. O

Lemma 65.
1. If 18 = (A= B e U™ [V]) then 7" |= (A = B typegan [¥])-
2. If i E(A=B U™ [V]) then /" = (A=B typepre [P]).

7
Proof. We prove part (1) by strong induction on i. For each i, define ® = {(¥, Ay, By, ¢) |
X = (Ap = By typean [¥])}, and show K(v;, ®) C ®. We will conclude 753" C & and so
7K = (A = By typean [¥]) whenever [UK"] (Ao, By); part (1) will follow by Lemma 64.

To establish K(v;,®) C ®, we check each type former independently. Consider the case
FuN(®)(¥, (a:A) — B, (a:A") — B’,¢). Then PTy(®)(¥, A, A’, ), which by Lemma 64 implies
K = (A = A typek,, [¥]); similarly, 7/°" |= (a: A > B = B’ typek,, [¥]). By Rule 6, we
conclude 7/" |= ((a:A) — B = (a:A") — B’ typekan [¥]). The same argument applies for every type
former except for UKAN, where we must show 7" |= (Z/IjKa” typekan [¥]) for every j < i. The coe

conditions are trivial by coe;”;[?/an(M ) — e M; the hcom conditions hold by hcom;kan —g fcom,
ut !

K= (A=Be Z/{]Ka” [¥]) implies 7/" |= (A = B typex,, [¥]) (by induction), and Rule 57.

We prove part (2) directly for all 4, by establishing P(v;, 75", ®) C ® for ® = {(¥, A, By, ¢) |
P |= (Ap = By typekan [¥])} and appealing to Lemma 64. Most type formers follow the same
pattern as above; we only discuss Fcom, UPRE, and UKAN. For Fcom, we appeal to part (1) and
Rule 52, observing that PTy(7/@") (¥, A, B, ) if and only if Tm([U/X*"|(¥))(A, B). For UPRE and
UKAN, 77 |= (UF typeye [¥]) for all j < is immediate by Rule 58. O

Rule 60 (Elimination). If 75 = (A= B € UF [V]) then 75° = (A = B type,, [V]).
Proof. Immediate by 77 C 78" and Lemmas 63 and 65. O
Rule 61 (Introduction). In 75",
1 IfA=A €U} V] anda: A> B=B" €U} [V] then (a:A) - B= (a:A") — B € U} [¥].
2. IfA=A" €Uy [¥] and a: A> B =B € Uf [V] then (a:A) x B = (a:A") x B' e UF [V].

g If A=A" € UF [V,2] and P- = P, € Ale/x) [V] for e € {0,1} then Pathy 4(FPo, P1) =
Pathx.A/(Pé,P{) S Z/{J”‘ [\If]

4o IfA=A €UP U], M=M' € A V), and N=N' € A [¥] then Eq,(M,N)=Eq(M',N') €

pre

u;™= [vl.
5. void € UF [V].
6. nat € U [V].
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7. bool € U [¥].

8. wbool € UF [V].
1 K

9. St eUf [V].

10. f A=A eUf [V |r=0], B=B" €U} [¥], and E=FE" € Equiv(A,B) [V | r = 0], then
V. (A, B,E) =V, (A, B, E') € Ur [0],

11. Ifi < j then U € U]Pre [P].
12. If i < j then U e Ul 0],

Proof. Note that Rule 60 is needed to make sense of these rules; for example, in part (1), by
Rule 60 and 75 |= (A € UF [¥]) we conclude 75 = (A type,, [¥]), which is a presupposition of
8 F (a: A> B =D cUf [V]).

For part (1), by 75" |= (A= A" € U [¥]) and Lemma 65, 7 |= (A = A’ type, [¥]); similarly,
by 75 = (a: A > B =B € U} [¥]) and Lemmas 63 and 65, 7 = (a: A > B = B’ type, [V]).
By Rule 1, we conclude that 77 = ((a:4) — B = (a:A") — B’ typey. [¥]), and in particular,
PTy(r/) (¥, (a:A) — B, (a:A") — B’,.). Therefore Tm([Uf])((a:A) — B, (a:A") — B’) as needed.
Parts (2-12) follow the same pattern. O

Rule 62 (Kan type formation). 75 = (UK typexan [¥])-

Proof. By Rule 61, 75 |= (Uf®" € U3 [¥]); the result follows by Rule 60. O
Rule 63 (Subsumption). If 75 = (A = A’ € U™ [U]) then 78 | (A= A’ € U™ [V]).

Proof. By 7" C 77" we have [Uf"] C [UP™] and thus Tm([¢52"]) € Tm([UP]). O
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6 Rules

In this section we collect the rules proven in Sections 4 and 5 (relative to 75°) for easy reference.
Note, however, that these rules do not constitute our higher type theory, which was defined in
Sections 3 and 4 and whose properties were verified in Section 5. One can settle on a different
collection of rules depending on the need. For example, the REDPRL proof assistant [Sterling et al.,
2017] based on this paper uses a sequent calculus rather than natural deduction, judgments without
any presuppositions, and a unified context for dimensions and terms.

For the sake of concision and clarity, we state the following rules in local form, extending them to
global form by uniformity, also called naturality. (This format was suggested by Martin-Lof [1984],
itself inspired by Gentzen’s original concept of natural deduction.) While the rules in Section 5
are stated only for closed terms, the corresponding generalizations to open-term sequents follow by
the definition of the open judgments, the fact that the introduction and elimination rules respect
equality (proven in Section 5), and the fact that all substitutions commute with term formers.

In the rules below, ¥ and = are unordered sets, and the equations in = are also unordered. J
stands for any type equality or element equality judgment, and x for either pre or Kan. The — g
judgment is the cubically-stable stepping relation defined in Section 2.

Structural rules

Atype, (V] T Avpe,[V] TV 05U A=A typey,, V]
a:A>ae AV a:A>J V] T [V'] A=A type,. [V]
A=A type, V] A=A type, (V] A= A" type,, [¥] M'=M e A Y]

A’ = A type,. [V] A= A" type, [V] M=M € A Y]
M=MecAW M=M"eA[Y] M=M ecA[¥] A=A type, [V]
M=M"e A V] M=M e A [J]
a:A> B= DB type, [V] N=N'€e A |[¥] a:A>M=M'e B [V] N=N'€e A |[¥]

B[N/a] = B'[N'/a] type, [¥] M[N/a] = M'[N'/a] € B[N/a] [¥]

Restriction rules

a J V=] J(r/z) [V | E(r/z)]
T2 J[¥|Ze=¢ J[T|Ee=7 J 0,z |Z2=r1]

Computation rules

A" = B type,, [V] Ar—gp A M' =N € A V] M —g M’
A = B type,, [V] M =N e A [¥]

Kan conditions
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/ / /
T =T r, =0 r;=1 TP =T
[ —

i = ré valid r; = r; valid
r; = r} valid
A=A typey,, [V]
M=M"e A Y]
(Vi,7) NiiN]'- EAV,y|ri=rlr; :r}]
(Vi)  Ni{r/y)=M € A[¥|r;=r]]

hcom’y™" (M r; = 1 < y.N;) = hcom’y,™ (M’ 15 = 7} < y.N}) € A [U]

r; = r} valid

A typeKan [\Il]

M e A [¥]
(Vi,j) Ni=Nj € A[W,y|ri=rir;=r]]
(Vi)  Ni(r/y)=M e AV |r;=r]

hcom’y™" (M;r; = ri < y.N;) =M € A [¥]

Ty = T‘é

A typeKan [‘Il]

M e A [V]
(Vi,j) N, =N; € AW, y|r=r}r; :7"3]
(Vi)  Ni(r/y)=M e AV |r;=r

hcomrAwT,(M; ri =1, = y.N;) = N;(r' Jy) € A [Y]

A=A typey,, [W,2] M =M€ A(r/x) [P] A typean [V, 2] M € A(r/xz) [V]
coel " (M) = coel i (M) € Alr' /) [U] coe” (M) =M € Alr/z) [¥]

r; = r} valid

A=A typekan [V, 9]

M =M € Alr/y) [Y]
(Vi,j) Ni=NjeAWy|ri=rirj=r]
(Vi) Ni(r/y)=M € A(r/y) [V | ri =1}

com;_”X/(M; ri =1, < y.N;) = com;jl’f/ (M';r; =71} — y.NI) € A(r' Jy) [V]

i = 7“2 valid
A typelf(an [\117?/]
M e A(r/y) [¥]
(Vi,j) Ni=N; € AU,y |ri=r,rj=r1]
(Vi)  Ni(r/y)=M € Alr/y) [V | r; =1
[

comy (M = r; = y.N;) = M € A(r/y) [¥]

]
]
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T, = T'g

A 1:ypeKan [‘Ijv y]

M e Alr/y) [V]
(Vi,j) Ni=Nj € AW,y |r=rir;=1]]
(Vi) Ni{r/y)=M € A{r/y) [¥ | ri =r]]

com W (Mri = 1) = y.N;) = Ny(r' [y) € A(r' Jy) [¥]

Dependent function types

A=A type, V] a:A> B=DB type, [V] a:A>M=M"e B [¥]
(a:A) — B = (a:A") — B’ type,, [¥] Xa.M = Xa.M' € (a:A) — B [¥]
M=M € (a:A) - B[¥] N=N €AY a:A>MeB[¥] NecA[Y]
app(M, N) =app(M’',N') € B[N/a] [¥Y] app(Aa.M,N)= M[N/a] € B[N/a] [¥]

M € (a:A) — B [Y]
M = Xa.app(M,a) € (a:A) — B [V]

Dependent pair types

A=A type, [V] a:A> B=DB type, [V] M=M € A Y] N = N' € B[M/a] [¥]
(a:A) x B = (a:A") x B type, V] (M,N)=(M',N") € (a:A) x B [V]
P=P e (a:A) x B [¥] P=P € (a:A) x B [¥] M e A Y]
fst(P) = fst(P') € A [V] snd(P) = snd(P’) € Bfst(P)/a] [¥] fst((M,N)) =M € A [¥]
N € B [V] P € (a:A) x B [¥]
snd((M,N)) =N € B [¥] P = (fst(P),snd(P)) € (a:A) x B [V]
Path types

A=A type, [¥,z]  (Ve) P.= P e Ale/x) [¥]
Path, 4 (P, P1) = Path, 4/ (P}, P|) type, (V]

M=MecA[U,x] (Vo) M{e/z) = P. € Ale/z) [¥] M = M’ € Path, _4(Py, P1) [¥]
(z)M = (x)M" € Path, (P, P1) [¥] Ma@r=M'@Qr e A(r/z) [¥]
M € Path, a(Po, P1) [¥] Me A Y, x]
M@e =P, € Ale/x) [V] ((x)M)Qr =M (r/z) € A{r/z) [V]

M € Pathx.A(Po,Pl) [\I’]
M = (z)(M@Qz) € Path, (P, P1) [V]
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Equality pretypes

A=A"type, V] M=MecA[¥] N=NcAlY] M =N € A [¥]
Eqa(M,N)=Eqa(M',N') typey [V] x € Eq (M, N) [V]
E € Equ(M,N) [V] E € Equ(M,N) [V]
M=N € A Y] E =% € Equ(M,N) [¥]
Void
M € void [¥]
void typekan V] J [¥]

Natural numbers
M =M’ € nat [¥]
nat typexa, [¥] z € nat [¥] s(M) =s(M’') € nat [¥]

n:nat > A type, [¥]
M =M’ € nat [¥] Z=7"€ Alz/n] [Y] n:nat,a: A> S =5 € Als(n)/n] [¥]
natrec(M; Z,n.a.S) = natrec(M'; Z',n.a.S") € A[M/n] [¥]

Z e AV
natrec(z; Z,n.a.S) =Z € A [V]

n:nat > A type, [V] M € nat [¥] Z € Alz/n] [V] n:nat,a: A> S € Als(n)/n] [¥]

natrec(s(M); Z,n.a.S) = S[M /n|[natrec(M; Z,n.a.S)/a] € A[s(M)/n] [¥]

Booleans

bool typekan [¥] true € bool [V] false € bool [V]

b:bool > C type,. [V]
M =M'€bool [¥] T=T €Cltrue/b] [¥] F=F' € Clfalse/b] [¥]
ifp A(M; T, F) =ify 4 (M T, F') € C[M/b] [V]

T € B [V] I € B [V]
ifpa(true; T, F) =T € B [¥] ifp.a(false; T, F) = F € B [V]

Weak Booleans
M = M’ € bool [¥]
wbool typex., [V] M = M' € wbool [¥]

b:wbool > A = A’ type,, [¥]
M =M'ewbool [¥] T=T € Altrue/b] [¥] F=TF" € Alfalse/b] [V]
ifp A(M; T, F) =ify 4 (M T, F') € A[M /0] [V]
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Circle

St typekan [V] base € S! [¥] loop, € S' [¥] loop, = base € S' [¥]

c:St> A=A typex,, [V] M =M eS![U]
P =P’ € Albase/c| [V] L=1L"e Alloop,/c] [¥,z] (Ve) L{e/x) = P € Albase/c] [V]
Sl-elim, a(M; P,2.L) = S'-elim._ o (M'; P',2.L') € A[M/c] [¥]

P e B [V] L e B[V, z] (Ve) L{e/z) = P € Ble/x) [¥]
Sl-elim,_4(base; P,z.L) = P € B [V¥] St-elim, 4 (loop,; P,z.L) = L{r/x) € B(r/z) [¥]

Univalence

isContr(C) := C x ((c:C) — (¢:C) — Path_¢(c, )
Equiv(A, B) := (f:A — B) x ((b:B) — isContr((a:A) x Path_g(app(f,a),b)))

A=A type, [V |r=0] B = B’ type,, [V] E=F' € Equiv(A,B) [V |r = 0]
Ve(A,B,E) =V, (A, B E') type, [V]

A type,, [V] B type, [V]
VO(Av 37 E) =A type, [\Ij] Vl(Aa Ba E) =B type, [\Il]

M=MecA[¥|r=0]
N=N'e B [¥] E € Equiv(A,B) [V | r = 0] app(fst(E),M)=N € B [¥ | r =0]
Vin.(M, N) = Vin,.(M',N') € V.(A, B,E) [¥]

M e A Y] N € B [¥]
Ving(M,N)= M € A [V] Vini (M,N)= N € B [V]

M=M €V,(A,B,E)[¥] F=fst(E)e A— B[V |r=0]
Vproj,.(M, F) = Vproj, (M, fst(E)) € B [¥]

McA[U] FeA— BIY M € B[]
Vprojo(M, F) = app(F, M) € B [¥] Vproj, (M, F) =M € B [U]

MeA[Y|r=0] N € B [V] FeA— B[V |r=0 app(F,M)=N € B [V |r=0]

Vproj,(Vin,(M,N),F) = N € B [¥]

NeV,(A,B,E)[¥] M=NecA[¥|r=0
Vin, (M, Vproj,(N,fst(E))) =N € V,.(A,B,E) [V]
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Universes

A=A euf [V A=A el [¥] i<j
UP™ type,. [V] U typeyan (V] A= A type, [V] A=A eu; V]
A=A ey [v] A=A elf [¥]  a:A>B=B el [J]
A=A e U [v] (a:4) = B = (a:A') » B' € U [V]

A=A cU; V] a:A>B=B clf [¥]
(a:A) x B=(a:A') x B' e U V]

A=A U [W,a] (Vo) P.= Pl € Ale/a) [V]
Path,_a(Po, P1) = Path, (P}, P) € U U]

A=A eU™[¥) M=MecAV] N=NcAl[y

Eqa(M,N)=Equ (M, N') e u]Pre (] void € U] [¥] nat € U [V]

bool € UF [W] wbool € Uf (U] St eul [

A=A ceUf W|r=0 B=BeUj[V] FE=E €Equv(A B)[¥|r=0
V,.(A,B,E) =V, (A, B E") e U 9]

i<j i<J
U € U (7] U e Ul 1]
r; = r} valid
A typekan [\Ij]

M=M € A[Y]

(Vi,j) Bi=Bjtypeyay [,y |1 =1}, 75 =1]
(Vi,j) Ni=Nj e B;(r'Jy) [V |r; =r],r; =1/
(Vi) Bi(r/y) = A typexay [¥ | r; = r{]

(Vi)  coey 5/ (Nj) =M € A [V |r; =r]]

box™" (M r; = 7} < N;) = box"™" (M'sr; = 1} < N) € hcomy il (As i = 1 < y.B;) [V]
J

u
r; = 7“;
A typeKan [\Il]
M e A Y]
(Vi,j) Bi= Bj typegan [,y | ri = 75,75 =17]
(Vi,j) Ni=Nj € Bilr'[y) [¥ | vy = v}, rj = 7]
(Vi) Bilr/y) = A typekan [V | 75 = 7]
M € A [¥] (Vi) coey 5/ (Ni) =M € AV | r; = 7]
box™™"(M;r; = i < N;) = M € A [V] box" " (M; r; =1} < N;) = N; € Bi(r' /y) [¥]
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r; = r; valid
A typeKan [\II]
(Vi,j) Bi= B;- typekan [V, y | i =1, = 7“;]
(Vi) Bi(r/y) = A typeyan [ | ri = 17]
M=M e hcomz{;ﬁaﬁ/(A; ri =i < y.B;) [V

Caprwr’(M; P = 7-2 N sz) = capTM"l(M’; r; = T; — sz/) €A [\II]

r; = T’g

A typeg,, (V]
(Vi,j) Bi= Bj typexan ¥,y | ri = 15,15 = 17]
(Vi) Bi(r/y) = A typexan [V |15 =1}

M € A 7] M e hcom;;ﬁaﬁl(A;ri =71l <> y.B;) [¥]

i

cap™ " (Miri =i = y.B) =M € A[V]  cap™" (M;ry = r} = y.B;) = coey 5/ (M) € A [V]

_ N

T = T'; valid

A typeKan [\Ij]

M e A [¥]
(Vi,j) Bi=DBj typexay ¥,y | ri =115 =1}
(Vi,j) Ni=Nj € Bi{r'[y) [W | ri = v}, r;5 = 7]
(VZ) BZ<TI/y> =A typekan [‘Ij ’ i = T;]
(Vi) coe, g/ (Ni) =M € AV |r; = 7]

capTWT/(boxTWTI(M; ri =1 Ny)iri =71 = y.B;)) =M € A [¥]
r; = 1} valid
A typekan [\II]
(VZ,]) B'L = Bj typeKan [\I/ay | Ty = T;,Tj = T;]
(Vi) Bi(r/y) = A typegan [¥ | ri =1

M € hcom” ;3 (A;r; =r; = y.B;) V]

Kan
uj

AT

boxrwr’ (CapTWTI(M; r; = T”Ii — yBl)’ T = 7“; — M) =M € hcomLKan/(A; T = ’I“g — yBl) {\I’]
J
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7 Future work

Formal Cartesian cubical type theory With Guillaume Brunerie, Thierry Coquand, and
Dan Licata, we have developed a formal Cartesian cubical type theory with univalent universes,
accompanied by a constructive cubical set model, most of which has been formalized in Agda in the
style of Orton and Pitts [2016]. This forthcoming work explores the the Kan operations described
in this paper—in particular, with the addition of z = z diagonal constraints—in a proof-theoretic
and model-theoretic setting, rather than the computational setting emphasized in this paper.

Cubical (higher) inductive types Evan Cavallo is currently extending this work to account
for a general class of inductive types with higher-dimensional recursive constructors. In the cubical
setting, such types are generated by dimension-parametrized constructors with prescribed boundaries.
(For example, S! is generated by base and loop,, whose 2-faces are base.)

Discrete, hcom, and coe types In this paper we divide types into pretypes and Kan types, but
finer distinctions are possible. Some types support hcom but not necessarily coe, or vice versa.
Exact equality types always have hcom structure because x is a suitable composite for every box,
but not coe in general. Types with hcom or coe structure are not themselves closed under all type
formers, but depend on each other; for example,

—

(a:A) = B typencom [¥] when A type, [¥] and a: A > B typepcom V],

(a:A) X B typepcom [¥] when A typepcom [¥] and a: A > B typex,, [¥],

(a:A) — B typec,e [V] when A type... [¥] and a: A > B type.,. [V], and

. Path, 4(M, N) typec,e [¥] when A typey,, [V,z], M € A(0/z) [¥], and N € A(1/x) [V].

B

coe

Discrete Kan types, such as nat and bool, are not only Kan but also strict sets, in the sense
that all paths are exactly equal to reflexivity. To be precise, we say A = B typegi. [¥] if for any
P12 Uy — U, e, )l : Uy — Wy, we have Aty1po= B9} typekan Yo, and for any M € Ay V4], we
have Mg = M1l € Aynipy [Wa]. Discrete Kan types are closed under most type formers, including
exact equality. Exact equality types do not in general admit coercion, because coengéA (P(0/),P) (%)
turns any line P into an exact equality Eq,(P(0/z), P(1/x)) between its end points. However, if
A typegiee [¥] then a: A, a’: A> Eqy(a,d’) typegisc [¥], because paths in A are exact equalities.

Further improvements in RedPRL Implementing and using this type theory in REDPRL has
already led to several minor improvements not described in this paper:

1. We have added line types to REDPRL, (z:dim) — A, path types whose end points are not
fixed. Elements of line types are simply terms with an abstracted dimension, which has proven
cleaner in practice than the iterated sigma type (a:A) x (a’:A) x Path_4(a,d’).

2. We are experimenting with alternative implementations of the Kan operations for fcom and V
types in REDPRL, some inspired by the work in the forthcoming formal Cartesian cubical
type theory mentioned above.

3. The REDPRL proof theory includes discrete Kan, hcom, and coe types as described above, in
addition to the Kan types and pretypes described in this paper.

4. The definitions of the M ——g M’ and M valg judgments have been extended to account for
computations that are stable by virtue of taking place under dimension binders.
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