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We use an un(i)typed lambda calculus
as in Nuprl.

A ≐ B type => A evals to A', B evals to B',
A' and B' recognize the same values

M ≐ N ∈ A => A ≐ A type, A evals to A', M to M',
N to N', A' views N' and M' as
the same value

Ex: "bool type" because "bool" evals to "bool"
& exactly "true" and "false" are in "bool"

Ex: "if(true;false,42) ∈ bool" because
"if(true;false,42)" evals to "false"
and "false" is in "bool".

Computational Types
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Go Higher-Dimensional

The Book HoTT and the CCHM system
have higher-dim. interpretations

Can we do the same?

realizers/programs
higher-dim. (dims & Kan)

interesting spaces
universes + univalence
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Potential Benefits
1. ≐ is closer to equational

reasoning in standard math

2. adding more theorems
cannot break computation

functional extensionality
full universal properties
(ex: eta for natural numbers)
...

realizers & proof theory separated
perfect for programming
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Clarification #0

computational type theory
IS NOT

"extensional type theory"

You can collect your favorite theorems
as rules in your favorite theory

Realizers can be
a model of "ETT", a model of "ITT",

or potentially a model of HoTT.
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Clarification #1

computational type theory
IS NOT

operational sem. + canonicity

most formal type theories (defined by rules)
want decidable type-checking

f ≐ g ∈ nat -> nat
not decidable in general

but can be proved by induction in CTT
(as proving a theorem about realizers)
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Clarification #2

most formal type theories
want decidable type-checking
=> undecidable rules were ruled out

computational type theory
is fine with "undecidable rules"
=> ask users for guidance in practice
(can be interactive & tactic-based)
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Cubical Realizers
higher-dimensional programming

[Angiuli, Harper & Wilson]

with dim expr r := 0 | 1 | x
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loop{r}

Circle

dim 
expr

loop{x} value

loop{0} ↦ base

loop{1} ↦ base

base

loop{x}

base value

S1 value
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Circle

S1elim(a.A, base, B, w._)
  ↦ B

base

loop{x}

S1elim(a.A, loop{x}, _, w.L)
  ↦ L<x/w>

M ↦ M'
----------------------
S1elim(a.A, M, B, u.L)
  ↦ S1elim(a.A, M', B, w.L)

S1 value
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Kan: Coercions

coe{0->1}
(x.A, M)

M

A<0/x> A<1/x>
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coe{r->r'}(x.A, M) ∈ A<r'/x>

Kan: Coercions

coe{0->1}
(x.A, M)

M

A<0/x> A<1/x>

A<r/x>

∈
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x
yN1 N2
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hcom{r->r'}(A, M)
  [x -> (y.N1, y.N2)]

Kan: Homogeneous Comp.

M

x
yN1 N2

adjacency: needs exact equality (≐)

note: we forbid empty systems
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Kan Circle

hcom{r->r}(S1, M)... ↦ M

r != r'  ri is 0 or 1 (the first)
----------------------------------
hcom{r->r'}(S1, M)...[ri -> (y.N_0, y.N_1)]...
  ↦ N_ri<r'/y>

r != r'  ri != 0  ri != 1
---------------------------
hcom{r->r'}(S1, M)... value

coe{r->r'}(_.S1, M) ↦ M

formal
composition
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Kan Circle

r != r'  ri != 0  ri != 1
------------------------------------------
S1elim(a.A, hcom{r->r'}(S1, M)..., B, w.L)
  ↦ com{r->r'}(z.A[hcom{r->z}(...).../a],

S1elim(M, B, w.L))...

(using the definable heterogeneous comp.)

S1elim needs to handle new values
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Cubical Stability
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Cubical Stability

S1elim(a.A,
 loop{x}, B, w.L)

S1elim(a.A,
 base, B, w.L)

|---------> L<x/w>

|--> B

---> <0/x>

----->

<0/x>

L<0/w>

Dimension substs. do not
commute with evaluation!

<=??=>

Judgments for cubically stable
types, memberships, values, etc
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stability: consider every substitution

A ≐ B type =>
 under any further substitution ψ...
 Aψ and Bψ stably* eval to A' and B',
 stably* recognizing the same stable* values
 and having stably* equal Kan structures

M ≐ N ∈ A =>
 A ≐ A type and A evals to A',
 M and N stably* eval to M' and N',
 A' stably* views N' and M' as the same value

Cubical Type Theory

(*see our arXiv & POPL papers for details)
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Comparison with CCHM

no connections

no empty systems

based on realizability
(closer to standard math equality)

(handled by coe)
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Current Progress

dependent functions
dependent pairs
strict bools
"weak" bools

circle
...

univalence for
strict isomorphisms

Done:
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Current Progress

dependent functions
dependent pairs
strict bools
"weak" bools

circle
...

univalence for
strict isomorphisms

Univalence & Kan universes

Done:

Still working:
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RedPRL

a proof assistant based on
cubical realizability

incorporates recent advances
such as dependent subgoals

still nascent, changing everyday
https://github.com/RedPRL/sml-redprl

(inspired by Spiwack's work)
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RedPRL Example

connection
"p(x /\ y)"

p

p

{_}a

{_}a

b

a

a



22

Conclusion
Cubical extension of Nuprl realizers

Canonicity on points (diff. from CCHM)

Still working on Kan universes
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