Computational Higher-dimensional Type Theory & RedPRL 2017.07.04 @ INI Carlo Angiuli Evan Cavallo Favonia Bob Harper Jon Sterling Todd Wilson ``` programs/ realizers ``` computation programs/ realizers <---- type theory computation theory of computation programs/ realizers computation <---- computational type theory theory of computation meaning explanation <---- Martin-Löf type theory pre-mathematical in M-L's work We use an un(i)typed lambda calculus as in Nuprl. We use an un(i)typed lambda calculus as in Nuprl. ``` A \doteq B type => A evals to A', B evals to B', A' and B' recognize the same values ``` We use an un(i)typed lambda calculus as in Nuprl. ``` A \doteq B type => A evals to A', B evals to B', A' and B' recognize the same values ``` ``` M \doteq N \in A \Rightarrow A \doteq A type, A evals to A', M to M', N to N', A' views N' and M' as the same value ``` We use an un(i)typed lambda calculus as in Nuprl. ``` A \doteq B type => A evals to A', B evals to B', A' and B' recognize the same values ``` $M \doteq N \in A \Rightarrow A \doteq A \text{ type, } A \text{ evals to } A', M \text{ to } M', N \text{ to } N', A' \text{ views } N' \text{ and } M' \text{ as the same value}$ Ex: "bool type" because "bool" evals to "bool" & exactly "true" and "false" are in "bool" We use an un(i)typed lambda calculus as in Nuprl. ``` A \doteq B type => A evals to A', B evals to B', A' and B' recognize the same values ``` $M \doteq N \in A \Rightarrow A \doteq A \text{ type, } A \text{ evals to } A', M \text{ to } M', N \text{ to } N', A' \text{ views } N' \text{ and } M' \text{ as the same value}$ Ex: "bool type" because "bool" evals to "bool" & exactly "true" and "false" are in "bool" Ex: "if(true; false, 42) ∈ bool" because "if(true; false, 42)" evals to "false" and "false" is in "bool". # Go Higher-Dimensional The Book HoTT and the CCHM system have higher-dim. interpretations Can we do the same? # Go Higher-Dimensional The Book HoTT and the CCHM system have higher-dim. interpretations Can we do the same? realizers/programs higher-dim. (dims & Kan) interesting spaces universes + univalence #### Potential Benefits #### Potential Benefits ``` 1. = is closer to equational reasoning in standard math functional extensionality full universal properties (ex: eta for natural numbers) ... ``` #### Potential Benefits 1. = is closer to equational reasoning in standard math functional extensionality full universal properties (ex: eta for natural numbers) ... 2. adding more theorems cannot break computation realizers & proof theory separated perfect for programming computational type theory IS NOT "extensional type theory" computational type theory IS NOT "extensional type theory" Realizers can be a model of "ETT", a model of "ITT", or potentially a model of HoTT. You can collect your favorite theorems as rules in your favorite theory computational type theory IS NOT operational sem. + canonicity most formal type theories (defined by rules) want decidable type-checking computational type theory $IS\ NOT$ operational sem. + canonicity most formal type theories (defined by rules) want decidable type-checking f ≐ g ∈ nat -> nat not decidable in general but can be proved by induction in CTT (as proving a theorem about realizers) most formal type theories want decidable type-checking => undecidable rules were ruled out computational type theory is fine with "undecidable rules" => ask users for guidance in practice (can be interactive & tactic-based) #### Cubical Realizers higher-dimensional programming [Angiuli, Harper & Wilson] #### Cubical Realizers higher-dimensional programming [Angiuli, Harper & Wilson] with dim expr $r := 0 \mid 1 \mid x$ base value base value loop{r} dim expr loop{x} value loop{0} → base loop{1} → base M → M' ----S1elim(a.A, M, B, u.L) → S1elim(a.A, M', B, w.L) S1 value #### Kan: Coercions #### Kan: Coercions A<0/x> $$A<1/x>$$ $$M$$ $$coe{0->1}$$ $$(x.A, M)$$ $$coe{r->r'}(x.A, M) \in A$$ ### Kan: Homogeneous Comp. ### Kan: Homogeneous Comp. ### Kan: Homogeneous Comp. note: we forbid empty systems ### Kan Circle $coe\{r->r'\}(_.S1, M) \rightarrow M$ #### Kan Circle ``` coe\{r->r'\}(_.S1, M) \mapsto M hcom\{r->r\}(S1, M)... \mapsto M ``` formal composition S1elim needs to handle new values S1elim needs to handle new values Dimension substs. do not commute with evaluation! Judgments for cubically stable types, memberships, values, etc ### Cubical Type Theory stability: consider every substitution # Cubical Type Theory stability: consider every substitution ``` A \doteq B type => under any further substitution \psi... A\psi and B\psi stably* eval to A' and B', stably* recognizing the same stable* values and having stably* equal Kan structures ``` (*see our arXiv & POPL papers for details) # Cubical Type Theory stability: consider every substitution (*see our arXiv & POPL papers for details) # Comparison with CCHM based on realizability (closer to standard math equality) no connections no empty systems (handled by coe) ### Current Progress #### Done: dependent functions dependent pairs strict bools "weak" bools circle . . . univalence for strict isomorphisms ### Current Progress #### Done: dependent functions dependent pairs strict bools "weak" bools circle . . . univalence for strict isomorphisms Still working: Univalence & Kan universes #### RedPRL a proof assistant based on cubical realizability incorporates recent advances such as dependent subgoals (inspired by Spiwack's work) still nascent, changing everyday https://github.com/RedPRL/sml-redprl ### RedPRL Example #### Conclusion ``` Cubical extension of Nuprl realizers Canonicity on points (diff. from CCHM) Still working on Kan universes RedPRL (to be) an implementation ``` #### Conclusion Cubical extension of Nuprl realizers Canonicity on points (diff. from CCHM) Still working on Kan universes RedPRL (to be) an implementation #### Acknowledgements Our work is strongly influenced by the BCH and CCHM papers, work by Licata and Brunerie, and many inspiring discussions within the HoTT community.