
1

Carlo Angiuli
Evan Cavallo

Favonia
Bob Harper

Jon Sterling
Todd Wilson

Computational
Higher-dimensional
Type
Theory
& RedPRL
2017.07.04 @ INI

2

Computational Types

programs/
realizers

computation

2

Computational Types

programs/
realizers

computation

computational
type theory

computational
type theory

theory of
computation

<-----

2

Computational Types

programs/
realizers

computation

computational
type theory

computational
type theory

theory of
computation

meaning
explanation

Martin-Löf
type theory

pre-mathematical
in M-L's work

<-----

<----

3

We use an un(i)typed lambda calculus
as in Nuprl.

Computational Types

3

We use an un(i)typed lambda calculus
as in Nuprl.

A ≐ B type => A evals to A', B evals to B',
A' and B' recognize the same values

Computational Types

3

We use an un(i)typed lambda calculus
as in Nuprl.

A ≐ B type => A evals to A', B evals to B',
A' and B' recognize the same values

M ≐ N ∈ A => A ≐ A type, A evals to A', M to M',
N to N', A' views N' and M' as
the same value

Computational Types

3

We use an un(i)typed lambda calculus
as in Nuprl.

A ≐ B type => A evals to A', B evals to B',
A' and B' recognize the same values

M ≐ N ∈ A => A ≐ A type, A evals to A', M to M',
N to N', A' views N' and M' as
the same value

Ex: "bool type" because "bool" evals to "bool"
& exactly "true" and "false" are in "bool"

Computational Types

3

We use an un(i)typed lambda calculus
as in Nuprl.

A ≐ B type => A evals to A', B evals to B',
A' and B' recognize the same values

M ≐ N ∈ A => A ≐ A type, A evals to A', M to M',
N to N', A' views N' and M' as
the same value

Ex: "bool type" because "bool" evals to "bool"
& exactly "true" and "false" are in "bool"

Ex: "if(true;false,42) ∈ bool" because
"if(true;false,42)" evals to "false"
and "false" is in "bool".

Computational Types

4

Go Higher-Dimensional

The Book HoTT and the CCHM system
have higher-dim. interpretations

Can we do the same?

4

Go Higher-Dimensional

The Book HoTT and the CCHM system
have higher-dim. interpretations

Can we do the same?

realizers/programs
higher-dim. (dims & Kan)

interesting spaces
universes + univalence

5

Potential Benefits

5

Potential Benefits
1. ≐ is closer to equational

reasoning in standard math

functional extensionality
full universal properties
(ex: eta for natural numbers)
...

5

Potential Benefits
1. ≐ is closer to equational

reasoning in standard math

2. adding more theorems
cannot break computation

functional extensionality
full universal properties
(ex: eta for natural numbers)
...

realizers & proof theory separated
perfect for programming

6

Clarification #0

computational type theory
IS NOT

"extensional type theory"

6

Clarification #0

computational type theory
IS NOT

"extensional type theory"

You can collect your favorite theorems
as rules in your favorite theory

Realizers can be
a model of "ETT", a model of "ITT",

or potentially a model of HoTT.

7

Clarification #1

computational type theory
IS NOT

operational sem. + canonicity

7

Clarification #1

computational type theory
IS NOT

operational sem. + canonicity

most formal type theories (defined by rules)
want decidable type-checking

7

Clarification #1

computational type theory
IS NOT

operational sem. + canonicity

most formal type theories (defined by rules)
want decidable type-checking

f ≐ g ∈ nat -> nat
not decidable in general

but can be proved by induction in CTT
(as proving a theorem about realizers)

8

Clarification #2

most formal type theories
want decidable type-checking
=> undecidable rules were ruled out

computational type theory
is fine with "undecidable rules"
=> ask users for guidance in practice
(can be interactive & tactic-based)

9

Cubical Realizers
higher-dimensional programming

[Angiuli, Harper & Wilson]

9

Cubical Realizers
higher-dimensional programming

[Angiuli, Harper & Wilson]

with dim expr r := 0 | 1 | x

10

Circle

base

loop{x}

10

Circle

base

loop{x}

S1 value

10

Circle

base

loop{x}

base value

S1 value

10

loop{r}

Circle

dim
expr

loop{x} value

loop{0} ↦ base

loop{1} ↦ base

base

loop{x}

base value

S1 value

11

Circle

base

loop{x}

M ↦ M'

S1elim(a.A, M, B, u.L)
 ↦ S1elim(a.A, M', B, w.L)

S1 value

11

Circle

S1elim(a.A, base, B, w._)
 ↦ B

base

loop{x}

M ↦ M'

S1elim(a.A, M, B, u.L)
 ↦ S1elim(a.A, M', B, w.L)

S1 value

11

Circle

S1elim(a.A, base, B, w._)
 ↦ B

base

loop{x}

S1elim(a.A, loop{x}, _, w.L)
 ↦ L<x/w>

M ↦ M'

S1elim(a.A, M, B, u.L)
 ↦ S1elim(a.A, M', B, w.L)

S1 value

12

Kan: Coercions

coe{0->1}
(x.A, M)

M

A<0/x> A<1/x>

12

coe{r->r'}(x.A, M) ∈ A<r'/x>

Kan: Coercions

coe{0->1}
(x.A, M)

M

A<0/x> A<1/x>

A<r/x>

∈

13

Kan: Homogeneous Comp.

M

x
yN1 N2

13

hcom{r->r'}(A, M)
 [x -> (y.N1, y.N2)]

Kan: Homogeneous Comp.

M

x
yN1 N2

adjacency: needs exact equality (≐)

13

hcom{r->r'}(A, M)
 [x -> (y.N1, y.N2)]

Kan: Homogeneous Comp.

M

x
yN1 N2

adjacency: needs exact equality (≐)

note: we forbid empty systems

14

Kan Circle

coe{r->r'}(_.S1, M) ↦ M

14

Kan Circle

hcom{r->r}(S1, M)... ↦ M

coe{r->r'}(_.S1, M) ↦ M

14

Kan Circle

hcom{r->r}(S1, M)... ↦ M

r != r' ri is 0 or 1 (the first)

hcom{r->r'}(S1, M)...[ri -> (y.N_0, y.N_1)]...
 ↦ N_ri<r'/y>

coe{r->r'}(_.S1, M) ↦ M

14

Kan Circle

hcom{r->r}(S1, M)... ↦ M

r != r' ri is 0 or 1 (the first)

hcom{r->r'}(S1, M)...[ri -> (y.N_0, y.N_1)]...
 ↦ N_ri<r'/y>

r != r' ri != 0 ri != 1

hcom{r->r'}(S1, M)... value

coe{r->r'}(_.S1, M) ↦ M

formal
composition

15

Kan Circle

S1elim needs to handle new values

15

Kan Circle

r != r' ri != 0 ri != 1
--
S1elim(a.A, hcom{r->r'}(S1, M)..., B, w.L)
 ↦ com{r->r'}(z.A[hcom{r->z}(...).../a],

S1elim(M, B, w.L))...

(using the definable heterogeneous comp.)

S1elim needs to handle new values

16

Cubical Stability
Dimension substs. do not
commute with evaluation!

16

Cubical Stability

S1elim(a.A,
 loop{x}, B, w.L)

|---------> L<x/w>

----->

<0/x>

L<0/w>

Dimension substs. do not
commute with evaluation!

16

Cubical Stability

S1elim(a.A,
 loop{x}, B, w.L)

S1elim(a.A,
 base, B, w.L)

|---------> L<x/w>

|--> B

---> <0/x>

----->

<0/x>

L<0/w>

Dimension substs. do not
commute with evaluation!

<=??=>

16

Cubical Stability

S1elim(a.A,
 loop{x}, B, w.L)

S1elim(a.A,
 base, B, w.L)

|---------> L<x/w>

|--> B

---> <0/x>

----->

<0/x>

L<0/w>

Dimension substs. do not
commute with evaluation!

<=??=>

Judgments for cubically stable
types, memberships, values, etc

17

stability: consider every substitution

Cubical Type Theory

17

stability: consider every substitution

A ≐ B type =>
 under any further substitution ψ...
 Aψ and Bψ stably* eval to A' and B',
 stably* recognizing the same stable* values
 and having stably* equal Kan structures

Cubical Type Theory

(*see our arXiv & POPL papers for details)

17

stability: consider every substitution

A ≐ B type =>
 under any further substitution ψ...
 Aψ and Bψ stably* eval to A' and B',
 stably* recognizing the same stable* values
 and having stably* equal Kan structures

M ≐ N ∈ A =>
 A ≐ A type and A evals to A',
 M and N stably* eval to M' and N',
 A' stably* views N' and M' as the same value

Cubical Type Theory

(*see our arXiv & POPL papers for details)

18

Comparison with CCHM

no connections

no empty systems

based on realizability
(closer to standard math equality)

(handled by coe)

19

Current Progress

dependent functions
dependent pairs
strict bools
"weak" bools

circle
...

univalence for
strict isomorphisms

Done:

19

Current Progress

dependent functions
dependent pairs
strict bools
"weak" bools

circle
...

univalence for
strict isomorphisms

Univalence & Kan universes

Done:

Still working:

20

RedPRL

a proof assistant based on
cubical realizability

incorporates recent advances
such as dependent subgoals

still nascent, changing everyday
https://github.com/RedPRL/sml-redprl

(inspired by Spiwack's work)

21

RedPRL Example

connection
"p(x /\ y)"

p

p

{_}a

{_}a

b

a

a

22

Conclusion
Cubical extension of Nuprl realizers

Canonicity on points (diff. from CCHM)

Still working on Kan universes

RedPRL (to be) an implementation

22

Conclusion
Cubical extension of Nuprl realizers

Canonicity on points (diff. from CCHM)

Still working on Kan universes

RedPRL (to be) an implementation

Acknowledgements
Our work is strongly influenced by

the BCH and CCHM papers,
work by Licata and Brunerie,

and many inspiring discussions
within the HoTT community.

