

i:I + M:A

 $i:\mathbb{I},j:\mathbb{I} \vdash M:A$

 $\frac{\mathbf{i} \colon \mathbb{I} \in \Gamma}{\Gamma \vdash \mathbf{i} \colon \mathbb{I}} \qquad \frac{}{0 \colon \mathbb{I}} \qquad \frac{}{1 \colon \mathbb{I}}$

judgmental framework of paths

Path types internalized i: I + M : A

Identification types freely generated by refl

They can co-exist!

- 1. What is the type? (form)
- 2. What are the constructors? (intro)
- 3. How to consume an element? (elim)
- 4. What happens when a constructor is consumed? (β)
- 5. Elements generated by constructors? (η)
- 6. How to compose stuff? (Kan operators)

new operators for every type

2n-2

how

 $2^{2n-2} \times (n+1) \times n?$

redtt/cooltt Cubical Agda [AFH+ABCHFL+CH] [CCHM+CHM] $0, 1, \wedge, \vee, \sim$ 0, 1 algebra on I De Morgan homogeneous r to r', r=r' 0 to 1, r=0composition with fixation r to r' coercion

Why Top Lines Agree?

hint: look at the rear

