Cartesian Cubical Computational Type Theory

Carlo Angiuli
Evan Cavallo
(*) Favonia
Robert Harper
Jonathan Sterling
Todd Wilson
Cubical
features of homotopy type theory
univalence, higher inductive types
+
Computational
features of Nuprl and PVS
strict equality, strict quotients, predicative subtypes...
Cartesian Cubical
features of homotopy type theory
univalence, higher inductive types

+

Computational
features of Nuprl and PVS
strict equality, strict quotients,
predicative subtypes...
Computational Types

programs/realizers

computation
Computational Types

programs/realizers ← computational type theory

computation theory of computation
Computational Types

- Programs/Realizers
- Computational Type Theory
- Computation
- Theory of Computation
- Meaning/Explanation
- Pre-mathematical in M-L's work
- Martin-Löf Type Theory
A Minimum Example

\[M := a \mid \text{bool} \mid \text{true} \mid \text{false} \mid \text{if}(M,M,M) \]
A Minimum Example

\[M := \text{a} \mid \text{bool} \mid \text{true} \mid \text{false} \mid \text{if}(M, M, M) \]

<table>
<thead>
<tr>
<th>bool val</th>
<th>if(M, Mt, Mf) ⇔ if(M', Mt, Mf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>true val</td>
<td>if(true, M, _) ⇔ M</td>
</tr>
<tr>
<td>false val</td>
<td>if(false, _, M) ⇔ M</td>
</tr>
</tbody>
</table>
A Minimum Example

\[
M := a | \text{bool} | \text{true} | \text{false} | \text{if}(M, M, M)
\]

\[
\begin{align*}
\text{bool val} & \quad \text{if}(M, M_t, M_f) \Rightarrow \text{if}(M', M_t, M_f) \\
\text{true val} & \quad \text{if}(\text{true}, M, _) \Rightarrow M \\
\text{false val} & \quad \text{if}(\text{false}, _, M) \Rightarrow M
\end{align*}
\]

The Language
A Minimum Example

\[
M := a \mid \text{bool} \mid \text{true} \mid \text{false} \mid \text{if}(M,M,M)
\]

<table>
<thead>
<tr>
<th>Type</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>bool val</td>
<td>\text{if}(M,\text{Mt},\text{Mf}) \Rightarrow \text{if}(M',\text{Mt},\text{Mf})</td>
</tr>
<tr>
<td>true val</td>
<td>\text{if}(\text{true},M,_ _) \Rightarrow M</td>
</tr>
<tr>
<td>false val</td>
<td>\text{if}(\text{false},_ _ ,M) \Rightarrow M</td>
</tr>
</tbody>
</table>

What are the types in **canonical forms?** \{\text{bool}\}
A Minimum Example

\[M := a \mid \text{bool} \mid \text{true} \mid \text{false} \mid \text{if}(M,M,M) \]

bool val

\[\text{if}(M,M_t,M_f) \Rightarrow \text{if}(M',M_t,M_f) \]

true val

\[\text{if}(\text{true},M,_) \Rightarrow M \]

false val

\[\text{if}(\text{false},_,M) \Rightarrow M \]

The Language

What are the types in **canonical forms**? \{bool\}

What are the **canonical forms** of the types?

bool: \{true, false\}
A Minimum Example

\[M := a \mid \text{bool} \mid \text{true} \mid \text{false} \mid \text{if}(M, M, M) \]

\begin{align*}
\text{bool val} & \quad \text{if}(M, M_t, M_f) \leadsto \text{if}(M', M_t, M_f) \\
\text{true val} & \quad \text{if}(\text{true}, M, _) \leadsto M \\
\text{false val} & \quad \text{if}(\text{false}, _, M) \leadsto M
\end{align*}

The Language

What are the types in canonical forms? \{bool\}

What are the canonical forms of the types?

\textbf{bool}: \{true, false\}

How they are equal? \textit{syntactic equality}
A Minimum Example

\[M := a \mid \text{bool} \mid \text{true} \mid \text{false} \mid \text{if}(M,M,M,M) \]

\text{bool val} \quad \text{if}(M,M_{t},M_{f}) \Rightarrow \text{if}(M',M_{t},M_{f})

\text{true val} \quad \text{if}(\text{true},M,_) \Rightarrow M

\text{false val} \quad \text{if}(\text{false},_,M) \Rightarrow M

The Language

What are the types in \textit{canonical forms}? \{\text{bool}\}

What are the \textit{canonical forms} of the types?

\textbf{bool}: \{\text{true, false}\}

How they are equal? \textit{syntactic equality}
A Minimum Example

\[M := \text{a} \mid \text{bool} \mid \text{true} \mid \text{false} \mid \text{if}(M,M,M) \]

types: \{bool\} with syntactic equality \(\approx \)

bool: \{true, false\} with syntactic equality \(\approx_{\text{bool}} \)
A Minimum Example

M := a | bool | true | false | if(M,M,M)

types: {bool} with syntactic equality ≈
bool: {true, false} with syntactic equality ≈_{bool}

A ⊳ B type
A⇓A' B⇓B' and A'≈B'
A Minimum Example

\[
M := a \mid \text{bool} \mid \text{true} \mid \text{false} \mid \text{if}(M,M,M)
\]

types: \{\text{bool}\} with syntactic equality \(\approx\)
bool: \{true, false\} with syntactic equality \(\approx_{\text{bool}}\)

\[
A \Downarrow B \text{ type}
A \Downarrow A' \; B \Downarrow B' \text{ and } A' \approx B'
\]

\[
\text{bool} \Downarrow \text{bool type}
\]
A Minimum Example

\[
M := a \mid \text{bool} \mid \text{true} \mid \text{false} \mid \text{if}(M,M,M)
\]

\[
\text{types: \{\text{bool}\}} \text{ with syntactic equality } \approx
\]

\[
\text{bool: \{true, false\}} \text{ with syntactic equality } \approx_{\text{bool}}
\]

\[
A \triangleq B \text{ type}
\]

\[
A \downarrow A' \quad B \downarrow B' \text{ and } A' \approx B'
\]

\[
\text{bool } \triangleq \text{bool type}
\]

\[
\text{if(true, bool, bool) } \triangleq \text{bool type}
\]

\[
\downarrow \text{bool}
\]
A Minimum Example

\[M := a \mid \text{bool} \mid \text{true} \mid \text{false} \mid \text{if}(M,M,M) \]

Types: \{\text{bool}\} with syntactic equality \(\approx \)

\text{bool}: \{\text{true}, \text{false}\} with syntactic equality \(\approx_{\text{bool}} \)

\[
\begin{align*}
\text{A} & \equiv \text{B type} \\
\text{A} \downarrow \text{A' } \text{B} \downarrow \text{B' } \text{and } \text{A'} \approx \text{B'}
\end{align*}
\]

\[
\begin{align*}
\text{bool} & \equiv \text{bool type} \\
\text{if}(\text{true}, \text{bool}, \text{bool}) & \equiv \text{bool type} \\
& \downarrow \text{bool} \\
\text{if}(\text{true}, \text{bool}, \text{any closed term}) & \equiv \text{bool type}
\end{align*}
\]
A Minimum Example

\[M := a \mid \text{bool} \mid \text{true} \mid \text{false} \mid \text{if}(M,M,M) \]

types: \{\text{bool}\} with syntactic equality \(\approx \)

bool: \{\text{true}, \text{false}\} with syntactic equality \(\approx_{\text{bool}} \)

\[M \equiv N \in A \]

\[A \equiv A \text{ type, } M \downarrow M', N \downarrow N', A \downarrow A' \text{ and } M' \approx_{A'} N' \]
A Minimum Example

\[M := a \mid \text{bool} \mid \text{true} \mid \text{false} \mid \text{if}(M,M,M) \]

\text{types: } \{\text{bool}\} \text{ with syntactic equality } \approx

\text{bool: } \{\text{true, false}\} \text{ with syntactic equality } \approx_{\text{bool}}

\[M \doteq N \in A \]

\[A \doteq A \text{ type, } M \downarrow M', N \downarrow N', A \downarrow A' \text{ and } M' \approx_{A'} N' \]

\[\text{false } \doteq \text{false } \in \text{bool} \]
A Minimum Example

M := a | bool | true | false | if(M,M,M)

types: {bool} with syntactic equality \(\approx\)
bool: \{true, false\} with syntactic equality \(\approx_{\text{bool}}\)

\[M = N \in A \]
A\(=\)A type, M\(\downarrow\)M', N\(\downarrow\)N', A\(\downarrow\)A' and M'\(\approx_{A'}\)N'

false \(\not=\) false \(\in\) bool

if(true,true,bool) \(\not=\) true \(\in\) if(true,bool,bool)
\[\downarrow\text{true} \quad \downarrow\text{bool} \]
A Minimum Example

\[M := a \mid \text{bool} \mid \text{true} \mid \text{false} \mid \text{if}(M, M, M) \]

\[\text{types: \{bool\} with syntactic equality } \approx \]
\[\text{bool: \{true, false\} with syntactic equality } \approx_{\text{bool}} \]

\[a : A \gg M \models N \in B \]

\[P \models Q \in A \text{ implies } M[P/a] \models N[Q/a] \in B[P/a] \]
A Minimum Example

\[M := a \mid \text{bool} \mid \text{true} \mid \text{false} \mid \text{if}(M,M,M) \]

types: \{\text{bool}\} with syntactic equality \(\approx\)

\text{bool}: \{\text{true}, \text{false}\} with syntactic equality \(\approx_{\text{bool}}\)

\[a:A \Rightarrow M \triangleq N \in B \]

\(P \triangleq Q \in A\) implies \(M[P/a] \triangleq N[Q/a] \in B[P/a]\)

\[b:\text{bool} \Rightarrow b \triangleq \text{if}(b, \text{true}, \text{false}) \in \text{bool}? \]
A Functional Example

\[M := a \mid M_1 \rightarrow M_2 \mid \lambda a. M \mid M_1 M_2 \mid ... \]

\[(M_1 \rightarrow M_2) \text{ val } \lambda a. M \text{ val } (\lambda a. M_1) M_2 \Rightarrow M_1[M_2/a] \]

Another Language
A Functional Example

M := a | M1→M2 | \a.M | M1 M2 | ...

(M1→M2) val \a.M val (\a.M1)M2 ⇒ M1[M2/a]

Another Language

What are the types in canonical forms?

the least fixed point of
S ⇒ \{M→N | M⇓, N⇓ in S\} union ...

What are the canonical forms of the types?
A→B: {\a.M}

How they are equal?
A1→B1 ≈ A2→B2 if A1 ≐ A2 and B1 ≐ B2
\a.M1 ≈_{A→B} \a.M2 if a:A >> M1 ≐ M2 ∈ B
Variables

<table>
<thead>
<tr>
<th>Nuprl/...</th>
<th>Coq/Agda/...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vars range over closed terms</td>
<td>Vars are indet.</td>
</tr>
<tr>
<td>Defined by transition b/w closed terms</td>
<td>Defined by conversion b/w open terms</td>
</tr>
</tbody>
</table>
Open-endedness

Proof theory/tactics/editors

\downarrow

Computational type theory

\downarrow

Programming language
Open-endedness

Proof theory/tactics/editors
\downarrow
Computational type theory
\downarrow
Programming language

Canonicity always holds
Homotopy Type Theory

github.com/HoTT/book
Homotopy Type Theory

\[a \quad b \quad \text{points} \]
Homotopy Type Theory

$p : a = b$

a

$q : a = b$

b

paths

points
Homotopy Type Theory

\[a \xrightarrow{p: a=b} b \xrightarrow{q: a=b} \]

paths between points

paths
Homotopy Type Theory

\[p : a = b \]
\[h : p = q \]
\[q : a = b \]

paths between paths

points
Equality and Paths

Equality (\equiv)

Silent in theory

$2 + 3 \equiv 5$

$\text{fst } \langle M, N \rangle \equiv M$
Equality and Paths

Equality (≡)

Silent in theory

\[2 + 3 \equiv 5 \]

\[\text{fst} \langle M, N \rangle \equiv M \]

If \(A \equiv B \) and \(M : A \) then \(M : B \)
Equality and Paths

Equality (≡)

Silent in theory

\[2 + 3 \equiv 5 \]
\[\text{fst } \langle M, N \rangle \equiv M \]
If \(A \equiv B \) and \(M : A \) then \(M : B \)

Paths (=)

Visible in theory
If \(P : A=B \) and \(M : A \) then \(\text{transport}(M,P) : B \)
Homotopy Type Theory

[Awodey and Warren] [Voevodsky et al] [van den Berg and Garner]

A : Type
a : A : Element
f : A → B : Function
C : A → Type : Dependent Type
a =_A b : Identification

Space
Point
Continuous Mapping
Fibration
Path
Features of HoTT

Univalence

If E is an equivalence between types A and B, then $\text{ua}(E):A=B$

Higher Inductive Types

circle sphere torus
Canonicity?

Canonicity broken by new features stated as axioms!
Canonicity?

Canonicity broken by new features stated as axioms!

Canonicity

For any $M : \text{bool}$, either $M \equiv \text{true} : \text{bool}$ or $M \equiv \text{false} : \text{bool}$
Canonicity?

Canonicity broken by new features stated as axioms!

For any $M : \text{bool}$, either $M \equiv \text{true} : \text{bool}$ or $M \equiv \text{false} : \text{bool}$

$\text{ua(not)} : \text{bool} = \text{bool}$

$\text{transport(ua(not),true)} \not\equiv \text{false}$
Canonicity for All

Canonicity for bool means canonicity for everyone
Canonicity for All

Canonicity for bool means

canonicity for everyone

\[M : \text{bool} \times A \]

\[\text{fst}(M) \equiv ??? : \text{bool} \]
Canonicity for All

Canonicity for bool means canonicity for everyone

\[M : \text{bool} \times A \]
\[\text{fst}(M) \equiv ??? : \text{bool} \]

Wants \(M \equiv \langle P, Q \rangle \) and then
\[\text{fst}(M) \equiv \text{fst}(P, Q) \equiv P \equiv \text{true or false} \]
Canonicity for Paths?

\[
\begin{align*}
 M : A \\
 \Rightarrow refl(M) : M =_A M
\end{align*}
\]
Canonicity for Paths?

\[
\begin{align*}
M & : A \\
\text{refl}(M) & : M =_A M \\
\end{align*}
\]

\[
a : A \vdash R : C(a,a,\text{refl}(a)) \quad P : M = N
\]

\[
\text{path-ind}[C](a.R,P) : C(M,N,P)
\]
Canonicity for Paths?

\[
\begin{align*}
M & : A \\
\text{refl}(M) & : M =_A M \\
\text{path-ind}[C](a.R, \text{refl}(M)) & \equiv R[M/a] \\
\end{align*}
\]
Canonicity for Paths?

\[
\begin{align*}
M &: A \\
\text{refl}(M) &: M =_A M
\end{align*}
\]

\[
a : A \vdash R : C(a,a,\text{refl}(a)) \quad P &: M = N
\]

\[
\text{path-ind}[C](a.R,P) : C(M,N,P)
\]

\[
\begin{align*}
a &: A \vdash R &: C(a,a,\text{refl}(a)) \quad M &: A \\
\text{path-ind}[C](a.R,\text{refl}(M)) &\equiv R[M/a] \\
&: C(M,M,\text{refl}(M))
\end{align*}
\]

\[
\text{path-ind}[C](a.R,ua(E)) \equiv ???
\]
Can we have a new TT with canonicity + univalence?

Yes with De Morgan cubes [CCHM 2016]
Yes with Cartesian cubes [AFH 2017]

... and higher inductive types?

Examples with De Morgan cubes [CHM 2018]
Yes with Cartesian cubes [CH 2018]
Restore Canonicity

Idea: each type manages its own paths
Restore Canonicity

Idea: each type manages its own paths

base : S1
Restore Canonicity

Idea: each type manages its own paths

base : S1
loop : base = base
Restore Canonicity

Idea: each type manages its own paths

base : S1
loop : base base
Restore Canonicity

Idea: each type manages its own paths

base \land loop

base : S1
loop : base = base
x : \mathbb{I} \vdash \text{loop}\{x\} : S1
\text{loop}\{0\} \equiv \text{base} : S1
\text{loop}\{1\} \equiv \text{base} : S1
Restore Canonicity

Idea: each type manages its own paths

Kan structure:
sufficient to implement path-ind

Kan types: types with Kan structure
Cartesian Cubes

Introducing \(I \) the formal interval
Cartesian Cubes

Introducing \(\mathbb{I} \) the formal interval

\[
\Gamma \vdash 0: \mathbb{I} \quad \Gamma \vdash 1: \mathbb{I}
\]

\[
\Gamma, \ x: \mathbb{I}, \ \Gamma' \vdash x: \mathbb{I}
\]
Cartesian Cubes

Introducing \mathbb{I} the formal interval

$$\Gamma \vdash 0: \mathbb{I} \quad \Gamma \vdash 1: \mathbb{I}$$

$$\Gamma, x: \mathbb{I}, \Gamma' \vdash x: \mathbb{I}$$

$x_1: \mathbb{I}, x_2: \mathbb{I}, \ldots, x_n: \mathbb{I} \vdash M : A$

$\Leftrightarrow M$ is an n-cube in A
Cartesian Cubes

Introducing \(\mathbb{I} \) the formal interval

\[
\Gamma \vdash 0: \mathbb{I} \quad \Gamma \vdash 1: \mathbb{I}
\]

\(\Gamma, x: \mathbb{I}, \Gamma' \vdash x: \mathbb{I} \)

Cartesian: works as normal contexts

\[
M(0/x) \quad M(1/x) \quad M(y/x)
\]
Cubical Programming

\[
\text{dim expr } r := 0 \mid 1 \mid x
\]

indeterminate
Circle

\[M := S1 \mid \text{base} \mid \text{loop}\{r\} \]
\[\mid S1\text{elim}(a.M, M, M, x.M) \mid \ldots \]
Circle

\[M := S1 \mid \text{base} \mid \text{loop}\{r\} \mid S1\text{elim}(a.M, M, M, x.M) \mid ... \]
Circle

\[M := S1 | \text{base} | \text{loop\{r\}} | S1\text{elim(a.M, M, M, x.M)} | ... \]
Circle

\[M := S1 \mid \text{base} \mid \text{loop}\{r\} \mid S1\text{elim}(a.M, M, M, x.M) \mid \ldots \]
Circle

\[M \Rightarrow M' \]

\[S1\text{elim}(a.A, M, B, x.L) \Rightarrow S1\text{elim}(a.A, M', B, x.L) \]
Circle

\[\text{S1elim}(a.A, \text{base}, B, x._) \xrightarrow{\text{loop}\{x\}} B \]

\[M \Rightarrow M' \]

\[\text{S1elim}(a.A, M, B, x.L) \Rightarrow \text{S1elim}(a.A, M', B, x.L) \]

\[\text{S1elim}(a.A, \text{base}, B, x._) \Rightarrow B \]
Circle

\[\text{S1elim}(a.A, \text{base}, B, x._) \mapsto B \]

\[\text{S1elim}(a.A, \text{loop}\{x\}, _, y.L) \mapsto L<x/y> \]

\[M \Rightarrow M' \]

\[\text{S1elim}(a.A, M, B, x.L) \Rightarrow \text{S1elim}(a.A, M', B, x.L) \]

\[\text{S1elim}(a.A, \text{base}, B, x._) \Rightarrow B \]

\[\text{S1elim}(a.A, \text{loop}\{x\}, _, y.L) \Rightarrow L<x/y> \]
Kan 1/2: Coercion

\[\exists \ x.A \]
Kan 1/2: Coercion

coe[θ→1]

{x.A}(M)

M

\{ x.A \}(M)

x.A

x

Kan 1/2: Coercion

\[
\text{coe}[\emptyset \mapsto 1]
\{x.A\}(M) \\
\subseteq A^{<r'/x>}
\]

\[
\text{coe}[r \leadsto r']\{x.A\}(M) \in A^{<r'/x>}
\]

\[
\subseteq A^{<r/x>}
\]
Kan 1/2: Coercion

\[
\begin{align*}
\text{coe} [\theta \sim 1] \{ x \cdot A \}(M) & \in A <r'/x> \\
\text{coe} [r \sim r'] \{ x \cdot A \}(M) & \in A <r'/x> \\
\text{coe} [r \sim r'] \{ x \cdot A \}(M) & \triangleq M \in A <r/x>
\end{align*}
\]
Kan 1/2: Coercion

\[\text{coe}[\emptyset \mapsto x] \quad \text{coe}[\emptyset \mapsto 1] \]

\[M \quad \{x.A\}(M) \quad \{x.A\}(M) \]

\[x.A \]

\[\text{coe}[r \mapsto r']\{x.A\}(M) \in A\langle r'/x\rangle \]

\[\{x.A\}(M) \simeq M \in A\langle r/x\rangle \]
Kan 2/2: Homogeneous Comp.
Kan 2/2: Homogeneous Comp.

hcom[0→1]\{A\}(M)
[x=0→y.N_0, x=1→y.N_1]
Kan 2/2: Homogeneous Comp.

\[\text{hcom}[0 \rightarrow 1]\{A\}(M) \]
\[[x=0 \rightarrow y.N_0, \ x=1 \rightarrow y.N_1] \]

\[\text{hcom}[r \rightarrow r']\{A\}(M) \] \[[\ldots, \ r_i=r'_i \rightarrow y.N_i, \ \ldots] \in A \]
Kan 2/2: Homogeneous Comp.

\[hcom[0 \rightarrow 1] \{A\}(M) \]

\[\left[x = 0 \rightarrow y.N_0, \ x = 1 \rightarrow y.N_1 \right] \]

\[hcom[r \sim r'] \{A\}(M) \[\ldots, r_i = r'_i \rightarrow y.N_i, \ldots\] \in A \]

\[hcom[r \sim r] \{A\}(M) \triangleq M \in A \]

\[hcom[r \sim r'] \{A\}(M) \[\ldots, r_i = r_i \rightarrow y.N_i, \ldots\] \]

\[\triangleq N_i <r'/y> \in A \]
Kan 2/2: Homogeneous Comp.
Kan Circle

coe[r ~ r']{_.S1}(M) ↦ M
Kan Circle

\[\text{coe}[r \sim r']\{_.S1\}(M) \Rightarrow M\]

\[\text{hcom}[r \sim r']\{S1\}(M)[...] \Rightarrow \text{fhcom}[r \sim r'](M)[...]\]

formal homo. composition
Kan Circle

\[\text{coe}[r \sim r']\{_.S1\}(M) \Rightarrow M\]

\[\text{hcom}[r \sim r']\{S1\}(M)[... \Rightarrow \text{fhcom}[r \sim r'](M)[...]\]

\[\text{fhcom}[r \sim r](M)[...] \Rightarrow M\]

formal homo. composition
Kan Circle

coe[r\sim r']{_.S1}(M) \to M

\text{hcom}[r\sim r']{S1}(M)[...] \Rightarrow \text{fhcom}[r\sim r'](M)[...]

\text{fhcom}[r\sim r](M)[...] \Rightarrow M

r! = r' \quad r_i = r'_i \quad (\text{the first } i)

\text{formal homo. composition}

\text{fhcom}[r\sim r'](M)[... , r_i = r'_i \to y. N_i, ...] \Rightarrow N_i <r'/y>
Kan Circle

\[\text{coe} [r \sim r'] \{._{S1}\} (M) \Rightarrow M\]

\[\text{hcom} [r \sim r'] \{S1\} (M)[...] \Rightarrow \text{fhcom} [r \sim r'] (M)[...]\]

\[\text{fhcom} [r \sim r'] (M)[...] \Rightarrow M\]

\[r! = r' \quad r_i = r'_i \quad \text{(the first } i)\]

\[\text{fhcom} [r \sim r'] (M)[..., r_i = r'_i \rightarrow y.N_i, ...] \Rightarrow N_i <r'/y>\]

\[r! = r' \quad r_i! = r'_i \quad \text{for all } i\]

\[\text{fhcom} [r \sim r'] (M)[...] \text{ val}\]
Kan Circle

S1elim needs to handle fcom
Kan Circle

\(S_{1 \text{elim}} \) needs to handle \(f_{\text{com}} \)

\[
\begin{align*}
\text{if } r \neq r' & \quad r_i \neq r'_i \\
\end{align*}
\]

\[
\begin{align*}
\text{S}_{1 \text{elim}}(a.A, f_{\text{com}}[r \rightsquigarrow r'](M)[...], B, x.L) \\
\Rightarrow \text{com}[r \rightsquigarrow r']\{y.A[f_{\text{com}}[r \rightsquigarrow y](M)[...]/a} \\
(S_{1 \text{elim}}(M, B, x.L))[...]
\end{align*}
\]

\(S_{1 \text{elim}}(\text{composition}) \Rightarrow \text{composition}(S_{1 \text{elim}}) \)
Cubical Stability

Dimension subs. do not commute with evaluation!
Cubical Stability

Dimension subsrts. do not commute with evaluation!

\(\text{S}1\text{elim}(a.A, \text{loop}\{x\}, B, y.L) \rightarrow L<x/y> \rightarrow <0/x> \rightarrow L<0/y> \)
Cubical Stability

Dimension subssts. do not commute with evaluation!

\[\text{S1elim}(a.A, \text{loop}\{x\}, B, y.L) \quad \overset{\text{Dimension subssts. do not commute with evaluation!}}{\longrightarrow} \quad L\langle x/y \rangle \]

\[\downarrow \quad <0/x> \quad \quad \downarrow \quad <0/x> \]

\[\text{S1elim}(a.A, \text{base}, B, y.L) \quad \overset{}{\longrightarrow} \quad B \quad \overset{\text{??}}{=} \quad L\langle 0/y \rangle \]
Cubical Stability

Dimension subssts. do not commute with evaluation!

\[\text{S1elim}(a.A, \\text{loop}\{x\}, B, y.L) \quad \vdash \quad L^{(x/y)} \]

\[\oplus \quad \downarrow \]

\[\text{S1elim}(a.A, \text{base}, B, y.L) \quad \vdash \quad B \quad \Leftrightarrow \quad L^{(0/y)} \]

Restrict our theory to only cubically stable parts
Cubical Type Theory

stability: consider every substitution
Cubical Type Theory

stability: consider every substitution

\[A \simeq B \text{ type } [\Psi] \]

A and B stably recognize the same stable values and have stably equal Kan structures

(see our arXiv papers)
Cubical Type Theory

stability: consider every substitution

\[A \simeq B \text{ type } [\Psi] \]
A and B stably recognize the same stable values and have stably equal Kan structures

\[M \simeq N \in A \ [\Psi] \]
A stably treats M' and N' as the same

(see our arXiv papers)
Variables

<table>
<thead>
<tr>
<th>Nuprl/...</th>
<th>Coq/Agda/...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vars range over</td>
<td>Vars are indet.</td>
</tr>
<tr>
<td>closed terms</td>
<td></td>
</tr>
<tr>
<td>Defined by</td>
<td>Defined by</td>
</tr>
<tr>
<td>transition b/w</td>
<td>conversion b/w</td>
</tr>
<tr>
<td>closed terms</td>
<td>open terms</td>
</tr>
</tbody>
</table>

\[
\text{exp } \text{vars} \quad \text{dim } \text{vars}
\]

\[
\text{cubical computational TT}
\]
arXiv papers

CHTT Part I [AHW 2016]
Cartesian cubical + computational

CHTT Part II [AH 2017]
Dependent types

CHTT Part III [AFH 2017]
Univalent Kan universes
Strict equality

CHTT Part IV [AFH 2017]
Higher inductive types
Proof Assistants

RedPRL
In Nuprl style
redprl.org

redtt
(Work in progress)
github.com/RedPRL/redtt

yacctt
Proof of concept
modified from cubicaltt
github.com/mortberg/yacctt
Conclusion

We extended Nuprl semantics by cubical structure which justifies key features of HoTT
Conclusion

We extended Nuprl semantics by cubical structure which justifies key features of HoTT

Best of the two worlds!
Conclusion

We extended Nuprl semantics by cubical structure which justifies key features of HoTT

Best of the two worlds!

We also built proof assistants

redprl.org
github.com/RedPRL/redtt
github.com/mortberg/yacctt