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Abstract
This paper contributes to recent investigations of the use of ho-
motopy type theory to give machine-checked proofs of construc-
tions from homotopy theory. We present a mechanized proof of a
result called the Blakers–Massey connectivity theorem, which re-
lates the higher-dimensional loop structures of two spaces sharing
a common part (represented by a pushout type, which is a general-
ization of a disjoint sum type) to those of the common part itself.
This theorem gives important information about the pushout type,
and has a number of useful corollaries, including the Freudenthal
suspension theorem, which was used in previous formalizations.
The proof is more direct than existing ones that apply in general
category-theoretic settings for homotopy theory, and its mechaniza-
tion is concise and high-level, due to novel combinations of ideas
from homotopy theory and from type theory.

1. Introduction
1.1 Homotopy-theoretical Aspects of Types
Types in Martin-Löf type theory can express an infinite-dimensional
structure that corresponds to the notion of space studied in ho-
motopy theory or the notion of an ∞-groupoid studied in higher
category theory (Hofmann and Streicher 1998; Voevodsky 2006;
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Lumsdaine 2009; van den Berg and Garner 2011; Awodey and
Warren 2009; Warren 2008; Gambino and Garner 2008). From this
point of view, types in type theory have not only elements, but also
paths (represented by the identity type IdA(a,b)), paths-between-
paths (represented by the iterated identity type IdIdA(a,b)(p,q)), and
so on. These higher paths have a complex algebraic theory, and
characterizing them is a rich mathematical question known as cal-
culating the (higher) homotopy groups of a space. For example, no
feasible general method is known for calculating the higher homo-
topy groups of higher-dimensional spheres, which are in a sense the
simplest ∞-groupoids, the n-sphere being freely generated by one
(non-trivial) loop in dimension n. The source of this complexity is
that paths in lower levels can give rise to non-trivial paths in higher
levels.

At the first level, 1-dimensional paths have identity, composi-
tion, and inverse operations given by reflexivity, symmetry, and
transitivity of equality. 2-dimensional paths (paths between paths)
have identity, composition, and inverses, but also have additional
algebraic structure induced by the 1-dimensional structure. For ex-
ample, in addition to the usual composition · given by transitivity of
equality, there is an additional “horizontal” composition that takes
2-paths r : IdIdA(a,b)(p,q) and s : IdIdA(b,c)(p′,q′) and produces a 2-
path IdIdA(a,c)(p · p′,q ·q′), given by compatibility of composition.
This additional composition operation in fact makes higher homo-
topy groups always commutative, even though 1-paths may not be.
Next, the 2-dimensional paths induce further structure on the 3-
dimensional paths, and so on. Though all this algebraic structure
arises from the J elimination rule for the identity type, it often re-
quires substantial mathematical work to find an explicit description
of the homotopy groups of a specific type.

A recent line of work on synthetic homotopy theory has investi-
gated the path structures of particular higher inductive types (Lums-
daine and Shulman 2013; Shulman 2011a; Lumsdaine 2011) in
type theory extended with Voevodsky’s univalence axiom (Vo-
evodsky 2006; Kapulkin et al. 2012). Using these tools, some
elementary constructions from algebraic topology or homotopy
theory have been developed and formalized using the proof as-
sistants Agda (Norell 2007) and Coq (Coq Development Team
2009). These include calculations of some homotopy groups of
spheres (Licata and Shulman 2013; Licata and Brunerie 2013; The
Univalent Foundations Program 2013) and some homotopy equiv-
alences (Licata and Brunerie 2015); constructions of the Hopf fi-
bration (The Univalent Foundations Program 2013, §8.5), of cov-
ering spaces (Hou (Favonia) 2014), and of Eilenberg–Mac Lane



spaces (Licata and Finster 2014); and proofs of the Freudenthal
suspension theorem (The Univalent Foundations Program 2013,
§8.6), the van Kampen theorem (The Univalent Foundations Pro-
gram 2013, §8.7), and the Mayer–Vietoris theorem (Cavallo 2014).
These developments are interesting from a formalization perspec-
tive because using the homotopy structure of types results in short,
clean mechanized proofs. Moreover, they are interesting from a
mathematical perspective because they are new proofs that com-
bine ideas and techniques from homotopy theory and from type
theory. Additionally, because the synthetic proofs abstract from the
concrete details of a setting like topological spaces, they can be in-
terpreted semantically in other higher-dimensional settings for ho-
motopy theory that model homotopy type theory (Shulman 2013,
2015; Gambino and Sattler 2015)—so they prove many theorems
at once by translation.

1.2 The Blakers–Massey Connectivity Theorem
In this paper, we present a formalization using the Agda proof
assistant of a result called the Blakers–Massey connectivity the-
orem (Blakers and Massey 1951, 1952, 1953) (see (May 1999,
Ch. 11, Section 1) for an introduction). This theorem concerns the
pushout type A+C B, which is specified by two types A and B and a
dependent type C : A→ B→Type. The pushout is a generalization
of a disjunction A∨B or disjoint union A+B, where certain “left”
and “right” elements are identified. As a higher inductive type, it is
specified by the following generators:

left : A→ A+C B
right : B→ A+C B
glue : (a : A)(b : B)→C a b→ Id(left(a), right(b))

Like a disjoint union, we have left and right constructors. The new
ingredient is that there is a path from left(a) to right(b) whenever
C relates a and b. Because the pushout allows “gluing together”
smaller spaces to make a bigger one, it plays a fundamental role
in constructing spaces. Many constructions used in previous for-
malizations, such as the suspension type that was used to build
higher spheres (The Univalent Foundations Program 2013, §6.5)
and Eilenberg–Mac Lane spaces (Licata and Finster 2014), are spe-
cial cases of pushouts (see The Univalent Foundations Program
(2013, §6.8) for more examples). Quotients of disjoint unions also
have applications in programming—for example, the integers can
be described as the pushout of two copies of the natural numbers
whose 0’s are glued together. The first homotopy group of a pushout
is characterized by the Seifert–van Kampen theorem, which was
developed in homotopy type theory by Michael Shulman and for-
malized by Hou (Favonia) (see The Univalent Foundations Pro-
gram (2013, §8.7)). This theorem says (roughly) that every path
in the pushout can be decomposed as an alternating sequence of
paths in A and paths in B whose middle points are related by C.

However, because of the complex algebraic structure of higher
path spaces, it is more difficult to calculate the higher homotopy
groups of a pushout—there is no straightforward general character-
ization. The Blakers–Massey theorem gives some partial informa-
tion, which characterizes the higher homotopy groups in a certain
range, depending on a property of A, B, and C, called connectivity.
We will give a precise definition of connectivity below, but intu-
itively, a type is n-connected if its k-paths for k 6 n are trivial. For
example, the (2-dimensional) sphere is 1-connected, because any
1-dimensional loop can be filled in; but it is not 2-connected, be-
cause there are non-trivial 2-dimensional loops, which correspond
to “going around the surface of the sphere.” The notion of connec-
tivity is extended to functions in such a way that, when a function
f : A→ B is n-connected, it induces an isomorphism on homotopy
groups at level k 6 n (and a surjection on the (n+ 1)st homotopy
group)—so, intuitively, an n-connected function witnesses that B is

“trivial relative to A” in dimensions up to n, in the sense that up to
this level it has no more information than A.

For any a : A, we can form the type Σb:B.C a b of “B’s that are
related to a by C,” and similarly for any b : B we can form the type
Σa:A.C a b of “A’s that are related to b by C.” The Blakers–Massey
theorem says that if for every a : A, Σb:B.C a b is n-connected, and
if for every b : B, Σa:A.C a b is m-connected, then for every a and
b the pushout constructor gluea,b : C a b→ Id(left(a), right(b)) is
(n + m)-connected. In particular, this implies that the homotopy
groups of the path type Id(left(a), right(b)) in the pushout (which
are precisely the higher homotopy groups of the pushout itself) are
the same as the homotopy groups in C a b up to a certain point.
Since information about the homotopy groups of the gluing family
C chosen to make a pushout is often known, this is a useful way to
obtain information about the homotopy groups of the pushout itself.
For example, it has as a special case the Freudenthal suspension
theorem, which was used in past formalizations to calculate the
nth homotopy group of the n-dimensional sphere (The Univalent
Foundations Program 2013, §8.6) and to verify the correctness of
a construction of Eilenberg–Mac Lane spaces (Licata and Finster
2014), and implies stability of the homotopy groups of spheres (in
a certain range, increasing both the dimension of the sphere and the
homotopy group by one gives the same group).

Relative to the existing work on synthetic homotopy theory, the
computer-checked proof of the Blakers–Massey theorem that we
report on in this paper is notable for a couple of reasons. First,
while not a new result in homotopy theory, it seems to be an es-
sentially new proof. Precisely, the present authors have translated
this type-theoretic proof into a proof of Blakers–Massey in arbi-
trary ∞-toposes1 (Finster et al. 2013, in preparation), significantly
more elementary than previous proofs of the theorem in such set-
tings (e.g. (Rezk 2010, Prop. 8.16)). Independently, based on the
Agda formalization presented here, the homotopy theorist Charles
Rezk has given another such translation (Rezk 2015); and Anel
et al. (2016) have obtained new homotopy-theoretic results using
generalizations of these translated proofs.

A second notable aspect of this proof is that it combines tech-
niques from homotopy theory and from type theory in an interesting
way. In developing synthetic homotopy theory, we have found that
the same result can often be proved in ways that feel more “type-
theoretic” or in ways that feel more “homotopy-theoretic”—for ex-
ample, when a standard mathematical argument is translated to type
theory and viewed from a perspective that emphasizes computation
and normal forms and cut-free proofs, it sometimes looks indirect
or reducible. The present work is the result of a back-and-forth be-
tween category theorists and type theorists, beginning with a cal-
culation of the fundamental group of the circle by Shulman (Shul-
man 2011b), which was “reduced” by Licata (Licata and Shulman
2013), which led to a “type-theoretic” calculation of the diagonal
homotopy groups of spheres by Licata and Brunerie (Licata and
Brunerie 2013), which led to a calculation by Lumsdaine of the
same using a more classical approach (the Freudenthal suspension
theorem) (The Univalent Foundations Program 2013, §8.6), which
led to the present result. To illustrate this interplay of type the-
ory and homotopy theory, we will actually describe two different
mechanizations of the Blakers–Massey theorem, one that is more
direct in type theory, but involves some calculations that are hard to
phrase in traditional homotopy-theoretic terms, and one that would
be more familiar to a homotopy theorist, but is less direct, in the

1 An ∞-topos is an abstract higher-categorical setting for homotopy theory,
including structure corresponding to the structure present on spaces or ∞-
groupoids; the prototypical ∞-topos is spaces, in the same way that the
prototypical 1-topos is the category of sets. It is expected that some variant
of homotopy type theory should have models in all ∞-toposes, but making
this precise is an open question.



sense that it makes use of some intermediate types that are elimi-
nated in the first version. Each mechanization is about 700 lines of
code, on top of library code that is not specific to this theorem.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present some background definitions. In Section 3, we
present the first mechanization of the Blakers–Massey theorem. In
Section 4, we present the second version of the proof. Both proofs
have been fully formalized in Agda.2

2. Background
We assume the reader is familiar with the basics of homotopy type
theory, including higher inductive types and some synthetic calcu-
lations of homotopy groups (for introductions, see Licata and Shul-
man (2013); Licata and Finster (2014); The Univalent Foundations
Program (2013)). In this section, we will review a few of the no-
tions that play an important role in this paper. For the text of the
paper, we will mostly use Agda syntax, but we will take some lib-
erties that improve the presentation, which we comment on as we
use them.

Paths We write x = y as the identity type, the type of paths from
x to y, refl as the constant path, ! p as the inverse of p, and p • q as
the concatenation of the paths p and q.

n-types One of the homotopy-theoretic ideas adopted in homo-
topy type theory is that types are naturally stratified by the level (if
any) at which their points, paths, paths-between-paths, etc. become
trivial. For example, a proposition is a type A for which you can
prove (x y : A) � x = y (points are trivial); a set, or 0-type is a
type A with a proof of (x y : A) (p q : x = y) � p = q (paths
are trivial). In general, we say that a type A is a (−2)-type (or is
contractible) if there is an x : A such that (y : A) � x = y, and that
A is an (n+1)-type if for all x y : A, (x = y) is an n-type. See (The
Univalent Foundations Program 2013, Ch. 3) for more details. In
Agda, we write is-truncated n A to mean that A is an n-type, and
n -Type for the (larger) type of all n-truncated types. We suppress
the projection from n -Type to the universe, i.e. we treat an n -Type
as a type.

Truncations Given any type A, there is a type τ n A, the n-
truncation of A, which is “the best approximation of A by an
n-type”. This type has a constructor proj : A � τ n A, and an
axiom stating that it is n-type. The recursion principle says that
to define a function f : τ n A � C, where C is an n-type, it suffices
to give a function b : A � C—and then f (proj x) ≡ b (x). More
generally, the induction principle says that to define a function
f : (x : τ n A) � C (x) where C : τ A n � n -Type is a family
of n-types, it suffices to give b : (x : A) � C (proj x)—with the
same computation rule. Truncations can be implemented using
higher inductive types (The Univalent Foundations Program 2013,
§6.9), so they need not be an extra primitive ingredient, but it is
conceptually helpful to think of them as a type constructor. In (The
Univalent Foundations Program 2013, §6.9), τ n A is written ||A||n
and proj is written |− |.

Connected types A dual notion to truncatedness is connectivity:
an n-connected type is trivial at and below dimension n. Precisely,
this may be defined using truncation (The Univalent Foundations
Program 2013, Def. 7.5.1): A type A is n-connected iff τ n A is
contractible. The n-truncation “kills” all the paths at levels above
n, so if this is contractible, then the original type was trivial in

2 The formalizations are available from https://github.com/
HoTT/HoTT-Agda/blob/1.0/Homotopy/BlakersMassey.agda
and https://github.com/dlicata335/hott-agda/blob/master/
homotopy/blakersmassey/ooTopos.agda respectively.

dimensions 6 n. For example, a type A is 0-connected when the set-
truncation of A is contractible—i.e. A has just one path-component.
A type is 1-connected when its 1-truncation is contractible—i.e. it
has one path-component, and trivial first homotopy group. In Agda,
we write is-connected n A to mean that A is n-connected.

This definition of n-connected types is equivalent to a universal
property, which says that “the type looks like a single point to every
family of n-types.” In type theory, this is expressed by the following
induction principle:

connected-ind : ∀ {n A} {a0 : A} (P : A � n -Type)
� is-connected (n + 1) A
� (P a0)
� ((x : A) � (P x))

connected-ind {a0} P c p a0 = p

This says that if P is a family of n-types, then an element of P a0
for some a0 extends to an element of P x for all x, with a homotopy
showing that on a0 this function gives back the original p.

Connected maps To a first approximation, n-connectivity of a
function f : A � B is supposed to mean that the homotopy structure
of B is the same as A up to level n, and thus that B is “trivial relative
to A” up to n. As a first cut, one expects such a function f : A � B
to induce an isomorphism on the homotopy groups of A and B up
to level n, or on the n-truncations of A and B. The actual definition
is slightly stronger, and implies both of these.

First, recall that f is an equivalence just if for each b:B, the
homotopy fiber type Σ (a:A) f a = b (which we sometimes write as
hfiber f b) is contractible.3 The homotopy fiber is a proof-relevant
preimage type: for each b, it consists of a point in a, together with a
chosen path from where f sends that point to b. So saying each fiber
is contractible is just a proof-relevant interpretation of “for each
b:B, there is a unique a:A that f sends to b,” a familiar definition of
bijection.

The definition of n-connectivity that we use4 is similar to
this definition of equivalence, except it demands only that the n-
truncation of the homotopy fiber is contractible:

is-connected-map n f = (b : B) � is-contr (τ n (Σ (a:A) f a = b))

Just as connectivity of types corresponds to an induction principle,
so does connectivity of functions (The Univalent Foundations Pro-
gram 2013, Lemma 7.5.7). The above definition of connectivity is
equivalent to saying that every family of n-types sees B as being
generated by A, in the sense that to prove P b for all b, it suffices to
prove P (f a) for all a:

connected-map-ind : ∀ {n A B} (f : A � B) (P : B � n -Type)
� is-connected-map n f
� ((a : A) � P (f a))
� ((b : B) � P b)

connected-map-ind f P cf p (f a) = p a

There are a couple of ways to gain intuition for this definition
of connectivity. First, setting aside the truncation, the definition
looks like the concept of surjection—for all b, there exists an a
that maps to b. Indeed, a function is (−1)-connected iff it is sur-
jective, which is best rendered in type theory as saying that there
merely exists a preimage of every b using the (−1)-truncation (The
Univalent Foundations Program 2013, Lemma 7.5.2). In general,
this definition corresponds to surjectivity on homotopy groups up
to dimension n+1—for example, if f is 0-connected, then one can
show that it is surjective on π1, the group made from paths, and
π0, the set of connected components. Moreover, if a function is
surjective on homotopy group k+1, it is injective on the homotopy

3 We write Σ (x:A) B for dependent pair types, though it is not valid Agda.
4 In our main Agda library we call this has-connected-fibers, to distinguish
it among other equivalent definitions of connectivity.



group k. For example, when f is 1-connected, it is a surjection on
π1, which implies that for every path f a0 = f a1, there merely
exists a path a0 = a1, which is very close to the definition of in-
jectivity on π0. A function that is both surjective and injective (and
a homomorphism) is an isomorphism, so when f is n-connected it
induces an isomorphism on homotopy groups up to n. Therefore, it
implies our first cut at the notion of connectivity, and additionally
specifies surjection on the n+1th homotopy group. These condi-
tions together—isomorphism up to πn, and surjectivity on πn+1—
comprise the standard homotopy-theoretic definition.

Another intuition is that an n-connected map f : A � B is
an extension of A obtained just by adjoining cells of dimension
greater than n+1. For instance, a (–1)-connected extension A � B
may add paths between existing points of A (and higher paths
similarly), but may not add any new points, and hence must remain
a surjection on 0-truncations. Under this viewpoint, the induction
principle for connected maps follows, because when mapping into
an n-truncated goal, once the action on A is known, images for the
adjoined (n+1)-cells of B are automatically (and uniquely) given.

One word of warning: there exist several different conventions
for the indexing of connectivity. Many texts use (n+1)-connected
where we use n-connected; the relationship between the indexing
for spaces and maps also varies by ±1.

Pushouts For two types X and Y, and Q : A � B � Type, the
pushout type Pushout X Y Q is a higher inductive type with con-
structors

left : X � Pushout X Y Q
right : Y � Pushout X Y Q
glue : {x : X} {y : Y}� Q x y � left x = right y

The (non-dependent) recursion principle is

pushout-rec-nondep : ∀ R
(left* : X � R)
(right* : Y � R)
(glue* : ∀ {x} {y} (q : Q x y) � left* x = right* y)
� (Pushout X Y Q � R)

pushout-rec-nondep R left* right* glue* (left x)≡ left* x
pushout-rec-nondep R left* right* glue* (right x)≡ right* x
ap (pushout-rec-nondep R left* right* glue*) (glue q) = glue* q

This is like case-analysis for a disjoint union X+Y, except that you
also need to show that the image of left and the image of right agree
on Q. The computation rules on points are definitional equalities,
while on paths it is a propositional equality.

The full dependent induction principle is

pushout-rec : ∀ (R : Pushout X Y Q � Type)
(left* : (x : X) � R (left x))
(right* : (y : Y) � R (right y))
(glue* : ∀ {x} {y} (q : Q x y)

� (transport R (glue q) (left* x)) = right* y)
� ((p : Pushout X Y Q) � R p)

and it has analogous computation rules.

Wedge Connectivity One particular use of the pushout is the
wedge of two pointed spaces. Suppose X and Y are types with x0 : X
and y0 : Y. Then the wedge X ∨ Y is the pushout of X and Y with
x0 glued to y0:

X ∨ Y = Pushout X Y (λ x y � x = x0× y = y0)

Informally, if X and Y are both the real line, and x0 and y0 are both
0, then X ∨ Y can be thought of as the axes of the plane. Then the
function that “includes the axes into the plane” may be defined as
follows:5

5 Formally, this is an application of pushout-rec-nondep, but for readabil-
ity we use a clausal notation.

wedge-to-product : X ∨ Y � X× Y
wedge-to-product (left x) = (x , y0)
wedge-to-product (right y) = (x0 , y)
ap wedge-to-product (glue (refl , refl)) = refl

Thinking of left x as “a point on the x-axis”, it is sent to the pair
(x, y0), and similarly for right y. In the final clause, after some
path induction, we must show that wedge-to-product (left x0) =
wedge-to-product (right x0), which is true by definition.

One of the key lemmas used in the proof of the Blakers–Massey
theorem concerns the connectivity of this map wedge-to-product: If
X is m-connected and Y is n-connected, then wedge-to-product is
(m+n)-connected. In the proof in Section 4, we will use this fact,
and it is proved in the formalization. For intuition, take X and Y
to be S2, the usual 2-dimensional sphere, which is 1-connected,
because any path can be contracted. Then this lemma says that up
to and including their 2-dimensional paths, S2 × S2 and S2 ∨ S2

have the same structure. The second homotopy group of S2× S2

is Z×Z because π2(S2) = Z and homotopy groups commute with
products. S2∨S2 can be visualized as two spheres joined at a point.
A 2-dimensional path is a homotopy from the constant path at this
point to itself, which can either go around the left sphere, around
the right sphere, or around both at the same time. But these two can
be commuted, because we can always pause the movement at one
side while finishing that on the other side. So it makes sense that its
second homotopy group is also Z×Z.

In the proof in Section 3, we will use this fact in a bit of a dis-
guised way: There are no wedges in the statement of the Blakers–
Massey theorem, so from a proof theoretic perspective, it seems a
bit indirect to introduce a wedge type just to use this lemma. We
can avoid this detour by phrasing the connectivity of the inclusion
of the wedge into the product as a derived induction principle, by
combining it with connected-map-ind and with pushout-rec for the
wedge. When we put these ingredients together, we get the follow-
ing principle:

wedge-connect : ∀ {m n p} {A B : Type} {a0 : A} {b0 : B}
(cA : Connected m A) (cB : Connected n B)
(C : A � B � m+n -Types)
(fa0 : (b : B) � C a0 b)
(fb0 : (a : A) � C a b0)
(fab0 : fa0 b0 = fb0 a0)
(a : A) (b : B) � C a b

α : wedge-connect [. . . ] fa0 fb0 fab0 a0 b = fa0 b
β : wedge-connect [. . . ] fa0 fb0 fab0 a b0 = fb0 a
[. . . α b0 and β a0 agree up to fab0 . . . ]

This says that if A is m-connected and B is n-connected, with points
a0 and b0, and C is a family of (m+n)-types, then to construct C
for all a and b, it suffices to construct it for all b, fixing a0, and
for all a, fixing b0, in such a way that these two constructions
agree when both are constructing C a0 b0. Additionally, there are
“computation” homotopies saying that on a0 and b0, the overall
construction behaves like what we put in (and a third homotopy
saying that these two are coherent). This principle was developed
by Lumsdaine to prove the Freudenthal suspension theorem (a
special case of Blakers–Massey) in type theory; for a proof, see
(The Univalent Foundations Program 2013, Lemma 8.6.2).

3. First Proof
3.1 Formulation
With the definitions of the previous section, we can now state the
Blakers–Massey theorem.

Theorem. Let X and Y be types, and Q a family X � Y � Type.
Suppose m,n > –1, and for each x:X the type Σ (y:Y) (Q x y) is



m-connected, and dually for each y:Y the type Σ (x:X) (Q x y) is
n-connected.

Then for each x:X and y:Y, the map glue {x} {y} : Qx y� left x =
right y is (m+n)-connected, where left x = right y is a path type of
Pushout X Y Q.

For the rest of this section, fix X, Y, Q, m, n as in the theorem.
The connectivity hypotheses are usually stated as connectivities

of the projection maps from the total space Σ (x:X) (y:Y) (Q x y).
The types in the present form can be seen as the fibers of these
maps; or, more directly, Σ (y:Y) (Q x y) can be read as “the type of
y’s that are related to x by Q”, and Σ (y:Y) (Q x y) dually.

The goal, which we now need to prove, relates the homotopy
groups of the original family Q to the homotopy groups of the
resulting pushout itself, up to dimension m + n. Unwinding the
definition of connectivity of a map, it is the statement:

blakers-massey : {x0 : X} {y : Y} (r : left x0 = right y)
� is-connected (n +m) (hfiber glue r)

We single out x0 with a subscript, since we will fix it throughout
the rest of the proof. (Similarly, in the formalization, we take it as
a section parameter.) Recalling that is-connected n X is defined as
is-contr (τ n X), this unwound form of the theorem can be thought
of as saying that for every path r : left x0 = right y, there is an
element q : Q x0 y (in the domain of glue) that is a kind of explicit
representation or canonical form for r, up to level n+m.

Overall, the (perhaps rather mysterious) connectivity hypothe-
ses are used twice: once rather weakly, to supply some extra auxil-
iary assumptions, and once more substantially to apply the wedge
connectivity lemma. It is the wedge connectivity lemma which
gives rise to the additivity of connectivity in the conclusion.

3.2 Definition of code
To prove blakers-massey, we want to apply based path induction
(The Univalent Foundations Program 2013, Lemma 7.5.2) on the
path r, so that we only have to consider the case where r is reflexiv-
ity. However, this requires either left x0 or right y to be generalized
over the whole pushout. (The intuition is that any path can be con-
tracted to the degenerate reflexivity path, provided at least one end-
point is able to vary freely.) So we want to generalize the original
goal to the statement

blakers-massey’ : {p : Pushout X Y Q} (r : left x0 = p)
� is-contr (code {p} r)

for some family of types

code : {p : Pushout X Y Q}� (left x0 = p) � Type

such that

code {right y1} r = τ (n +m) (hfiber glue r)

Recall that is-connected n X is defined as is-contr (τ n X), and so,
with this definition of code for right, is-contr (code {right y1} r)
is exactly the original goal. Just as the original goal gives a kind
of canonical form for the n+m-level information in r when r is
a path from inl to inr, so code {p} r can be thought of as a type
of explicit characterizations or canonical forms for (the n+m-level
information in) a path r with an endpoint anywhere in the pushout.

The family code will be defined by recursion on p, so we need
to feed these three components to the recursion principle of the
pushout:

• code { left x1} (r : left x0 = left x1) for any x1 : X; and
• code {right y1} (r : left x0 = right y1) for any y1 : Y, defined as

above to be τ (n + m) (hfiber glue r); and
• ap (λ p � code {p}) glue.

The difficulty is to find the analogue of the theorem for the left x1
case, that is, when both the end points of r are in X. Our trick is
to make our assumptions more symmetric, by supposing we have
some distinguished y0 : Y and q00 : Q x0 y0 while defining code;
like x0, y0 and q00 will be fixed through most of the rest of the
argument (using Agda’s section mechanism, so we do not write
them as arguments explicitly). We will show that we can discharge
these extra assumptions below.

The list of three needed components for defining code remain
the same, as does the definition in the right case, but for the other
cases we will now make use of newly added arguments y0 and
q00. In terms of diagrams, the above definition of the right case
code {right y1} (r : left x0 = right y1), which was chosen to make
our generalization imply the original theorem, can be drawn as
follows.6 It is the type of all q01’s such that

left x0

r
$$
right y1

=

left x0

glue q01 $$
right y1

(1)

For the left case, we define

code { left x1} (r : left x0 = left x1) =
τ (n +m) (hfiber (λ q10 � glue q00 • ! (glue q10)) r)

This represents (the truncation of) the type of all q10’s such that

left x0

r
��

left x1

=

left x0
glue q00// right y0

! (glue q10)zz
left x1

(2)

The remaining missing piece is ap (λ p � code {p}) glue, that
is, to show the above types are equivalent when there is q11 :
Q x1 y1 such that glue q1 connects left x1 to right y1. This boils down
to an equivalence between the type code { left x1} “transported”
along glue q1, and the type code {right y1}. Pictorially, the type
code { left x1} after transportation maps each r : left x0 = right y1
to a type of all q10’s such that

left x0

r
$$
right y1

=

left x0
glue q00// right y0

! (glue q10)zz
left x1

glue q11

// right y1

(3)

The goal is to show, for any r, there is an equivalence between the
truncation of the type of all q01’s satisfying Equation 1 and that of
all q10’s satisfying Equation 3. It turns out that this equivalence is
non-trivial and heavily relies on the connectivity conditions in the
Blakers–Massey.

We can slightly simplify the needed equivalence by eliminating
the middle r; ignoring the truncation for the moment, essentially we
want to prove that for any q01 there is a q10 such that the equation

left x0

glue q01 $$
right y1

=

left x0
glue q00// right y0

! (glue q10)zz
left x1

glue q11

// right y1

(4)

is true, and vice versa. Then we must show that these two functions
are inverse to each other, which establish an equivalence between

6 Truncations are ignored in diagrams.



all q01’s and q10’s. In this section we will only demonstrate the
direction from q10 to q01 as the other is symmetric. Ignoring the
truncations, we wish to show

∀ (q10 : Q x1 y0)
� Σ (q01 : Q x0 y1) (glue q01 = glue q00 • ! (glue q10) • glue q11)

The idea is to reorder all the hypotheses (including abstracting over
the fixed x0, y0 and q00) to match the wedge connectivity theorem.
After the reordering the lemma is

∀ x1 y0 (q10 : Q x1 y0) x0 (q00 : Q x0 y0) y1 (q11 : Q x1 y1)
� Σ (q01 : Q x0 y1) (glue q01 = glue q00 • ! (glue q10) • glue q11)

In intuition, with the wedge connectivity theorem and proper trun-
cations, we only have to consider the cases either q00 collides with
q10 or q11 collides with q10, as long as we give a coherent choice
when both collide.

Formally, while applying wedge-connect in Section 2, let A be
the type of the upper arm, Σ (x : X) (Q x y0), B be the lower arm,
Σ (y : Y) (Q x1 y), and C be

λ {(x1 , q11) (y0 , q00) �
τ (n +m) (hfiber glue (glue q00 • ! (glue q10) • glue q11))}

The connectivities of A and B are exactly the original hypotheses
of Blakers–Massey, and the truncation level of C is forced by the
explicit truncation. (x1 , q10) is a point of A and (y0 , q10) is a point
of B, which signifies the collision of either q00 or q11 with q10. The
term fa0, which represents the case where the upper arm q00 collides
to the diagonal q10, is the pair (q11 , lemma) where lemma is a path
of type

glue q11 = glue q10 • ! (glue q10) • glue q11

On the other hand, the term fb0, which represents the case where the
lower arm q11 collides to the diagonal q10, is the pair (q11 , lemma)
where lemma is a path of type

glue q00 = glue q00 • ! (glue q10) • glue q10

The last argument fab0 is to show that fa0 and fb0 agree on q10,
which follows from the fact that q10 is picked when both arms
collide with the diagonal. In sum, these define a function from q10’s
to q01’s.

The other direction can be defined similarly, and through the
same technique one can show they are inverse to each other. This
eventually fills the final piece of type

ap (λ p � code {p}) glue

and concludes the construction of code. In total, this construction
is the largest part of the proof, and consists of approximately 500
lines of code. In the verification that the two maps are inverse, the
mechanization involves some clever abstraction over portions of
the proof that can be shared between both the fa0 and fb0 cases
of wedge-connect lemma, which simplifies showing the final fab0
coherence assumption of this lemma.

It now remains to show the contractibility of code {p} r, for each
p : Pushout X Y Q and r : left x0 = p.

3.3 Contractibility of code
A straightforward way to show contractibility of a type A is to give
a point center : A, and a contraction from A to this point, i.e. a path
from every other point of A to center.

Centers. So we want to give a point of code {p} r, for each
p : Pushout X Y Q and r : left x0 = p. By based path induction on r,
it is enough to give a point of code (left x0) refl. By the construction
of code, this type reduces to

τ (n +m) (hfiber (λ q10 � glue q00 • ! (glue q10)) refl)

which is inhabited by the projected pair

proj (q00 , inv-r (glue q00))

where inv-r path : path • ! path = refl is a proof that any path
concatenated with its inverse is homotopic to refl.

Putting this together, we obtain the desired centers:

code-center : ∀ {p} r � code {p} r
code-center refl = proj (q00 , inv-r (glue q00))

Contractions. We now want a contraction on each code {p} r, to
the point code-center {p} r. The type Σ (p : Pushout XYQ) (left x0 =
p) of pairs of such p and r is contractible, so it is enough to give
a contraction for any specific pair. We give it for the pair right y0,
glue q00; but to do this, we step back to an intermediate generality,
and show

∀ {y1 : Y} (r : left x0 = right y1) (c : codes {y1} r)
� c = code-center {right y1} r

i.e. the case where p is right y1 for some y1 : Y, and r is arbitrary.
The re-generalization of r is needed for the path-induction below.

By construction, code {right y1} r is just τ (n+m) (hfiber glue r).
Using the induction principles for truncations, hfiber (as pairs), and
paths, we may assume that c is of the form proj (q01 , refl) for some
q01 : Q x0 y1, and r is glue q01. So it remains to show

proj (q01 , refl) = code-center {right y1} (glue q01)

This is a quite involved but mostly routine calculation, of about
50 lines; interested readers may check the Agda mechanization
directly for details (code-coh-lemma).

This gives a contraction to code-center on code {right y1} r, for
any y1, r. In particular, it gives us a contraction on code {right y0}
(glue g00), and hence, by the contractibility of the type of pairs
(p , r), on each type code {p} r, as required for blakers-massey” .

3.4 Theorem
We have shown our second generalization assuming fixed x0 :
X, y0 : Y, and q00 : Q x0 y0 (which were implicit parameters
in the above constructions). Making these explicit in the type of
blakers-massey” , we have shown

blakers-massey” : ∀ {x0} {y0} (q00 : Q x0 y0)
{p : Pushout X Y Q} (r : left x0 = p)
� is-contr (code x0 y0 q00 {p} r)

We need to show that this implies the first generalization

blakers-massey’ : ∀ {x0} {p : Pushout X Y Q} (r : left x0 = p)
� is-contr (code x0 {p} r)

which, by definition of code, immediately implies the original
blakers-massey by taking p of the form right y.

So the only remaining gap is the extra assumptions y0 and q00 in
blakers-massey” . Given x0 for blakers-massey’, the remaining goal
is a (–1)-type, and we assumed that m is at least –1, so the goal
is a fortiori m-truncated. Our connectivity assumptions say that
Σ (y : Y) (Q x0 y) is m-connected, so in particular its m-truncation
has an element. Because the goal is an m-type, we can eliminate the
truncation to obtain some element of it; i.e. a pair y0, q00 as desired.
This closes the gap and finishes the proof of the main theorem.

4. Second Proof
In this section, we describe a second mechanization of the Blakers–
Massey theorem.7 Qualitatively, this proof is “less type-theoretic”
and “more homotopy-theoretic”. For example, relative to Section 3,
it introduces some intermediate steps (cut formulas) that are not
used above. On the other hand, these intermediate steps allow more

7 This formalization uses a different Agda library, so we ask the reader to
bear with some changes in naming and capitalization conventions.



of the proof to be described in mathematical language, and there
are fewer spots in the proof that rely on reductions/calculations that
are difficult to convey outside of a proof assistant (though there are
still some). In particular, the construction of the equivalences in the
codes fibration has a higher-level description.

Fat Pushouts For this section, it will be helpful to use an alter-
native, “fat”, presentation of the pushout type. Suppose we have X
and Y and P : X � Y � Type, then the fat pushout adds a “middle”
constructor coming from P, and when p : P x y, rather than gluing
inl x to inr y directly, it glues them both to inm p.

It is specified by the following constructors:

inl : X � Pushout X Y P
inr : Y � Pushout X Y P
inm : {x : X} {y : Y}� P x y � Pushout X Y P
gluel : {x : X} {y : Y}� (p : P x y) � (inm p) = (inl x)
gluer : {x : X} {y : Y}� (p : P x y) � (inm p) = (inr y)

and the usual elimination rules for such a higher inductive. This is
equivalent to the previous presentation. For example, we define

glue : {x : X} {y : Y} (p : P x y) � (inl x) = (inr y)
glue p = gluer p ◦ ! (gluel p)

by composing gluel and gluer8, going through the new middle point.
The fatness does not add any information, roughly because we can
contract away inm p and gluel p by path induction, leaving only
gluer/glue. The fat pushout is helpful because it will allow us to
break up the definition of the equivalences in the codes fibration in
a more symmetric way.

Properties of hfibers and connectivity We will use the following
lemmas about homotopy fibers and connectivity.

First, when e is an equivalence, the homotopy fiber of f at e x (i.e.
Σ (a : A) f a = e x) is equivalent to the homotopy fiber of (e-1 o f)
at x (i.e. Σ (a : A) e-1 (f a) = x), by moving the equivalence to the
other side of the equation:9

hfiber-at-equiv : ∀ {A B B’} (f : A � B’) (e : B' B’) (x : B)
� HFiber f (e x)'HFiber (e-1 o f) x

Second, suppose we have a “fiberwise” function f : (x :
A) � B x � C x. This induces a function

(λ (a’,b’) � (a’ , f a’ b’)) : (Σ (a : A) B a) � (Σ (a : A) C a)

on the total spaces of B and C, which are the Σ-types that package
elements of B and C together with the A that they depend on. If
we have a particular a : A and c : C a, then the fiber of the partial
application f a at c is the same as the fiber of the total space at (a,c):

HFiber-fiberwise-to-total-eqv : {A : Type} {B C : A � Type}
{a : A} {c : C a} (f : (x : A) � B x � C x)
� (HFiber (f a) c)' (HFiber (λ (a’,b’) � (a’ , f a’ b’)) (a , c))

Roughly, the right-hand type consists of an (a’,b’) : (Σ (a : A) B a)
such that (a’, f a’ b’) = (a,c), so contracting the equality between

8 β ◦α is path concatenation in function composition order; i.e. α : x = y
β : y = z.
9 We elide the projection from an equivalence to the underlying function.

the first components of these pairs shows that it is the same as the
left-hand type.

Another fact is that this induced map on the total space is n-
connected when f is n-connected for each element of A:10

fiberwise-to-total-connected : ∀ {n A} {B C : A � Type}
(f : (x : A) � B x � C x)
� ((x : A) � ConnectedMap n (f x))
� ConnectedMap n (λ (a’,b’) � (a’ , f a’ b’))

See (The Univalent Foundations Program 2013, Lemma 7.5.13) for
a proof.

Connectivity is preserved by pre- and post- composition with an
equivalence:

∀ {n A B B’} {f : A � B} (e : B' B’)
� ConnectedMap n f � ConnectedMap n (e o f)
∀ {n A A’ B} {f : A � B} (e : A’' A)

� ConnectedMap n f � ConnectedMap n (f o e)

An n-connected map f : A � A’ induces an equivalence on
the truncations Trunc n A ' Trunc n A’.11 Below, we will need a
condition under which this equivalence extends to the truncations
of the fibers of maps g : A � B and h : A’ � B, i.e. the truncations
of Σ (a:A) g a = b and Σ (a’:A’) h a’ = b. We prove in the
formalization that it is sufficient to ask that h o f = g.

fiber-top-equiv : ∀ {n A A’ B} (f : A � A’) (g : A � B) (h : A’ � B)
� ConnectedMap n f
� ((x : A) � h (f x) = g x)
� {b : B}� (Trunc n (HFiber g b))' (Trunc n (HFiber h b))

4.1 Construction of CodesFor
For the remainder of this proof, we fix X Y : Type and P :
X � Y � Type such that

(x : X) � Connected i (Σ (y : B) P x y) where j>−1
(y : Y) � Connected j (Σ (x : A) P x y) where j>−1

We write W for the fat Pushout X Y P, and Z for Σ ((x , y) :
X × Y) P x y.

For this subsection, we fix an element of Z, written (x0:X, y0:Y, p0 :
P x0 y0). Our first goal is to construct

CodesFor : (w : W) (α : (inm p0) = w) � Type

Like above, CodesFor wα will be a type of explicit characterizations
or canonical representations of the path α. We define CodesFor by
pushout-elimination on w, which requires 5 cases. First, for inl x,
we need to give a type dependent on x:X and α : inm p0 = inl x; for
inr y, a type dependent on y:Y and α : inm p0 = inr y; and for inm p,
a type dependent on x:X, y:Y, p:P x y, and α : inm p0 = inm p. Then
for gluel and gluer we need to construct some equivalences between
the types given in the first step.

Fibers For the inl and inr cases, given any x related to y0, or any y
related to x0, we can define can define paths from inm p0:

gluel0 : {x : X}� P x y0 � (inm p0) = (inl x)
gluel0 pxy0 = ! (glue pxy0) ◦ gluer p0

gluer0 : {y : Y}� P x0 y � (inm p0) = (inr y)
gluer0 pxy0 = glue pxy0 ◦ gluel p0

For example, gluel0 produces the composite

inm p0 = inr y0 = inm pxy0 = inl x

while gluer0 goes through inl x0. We define the cases of the codes
fibration for inl and inr as the truncations of the homotopy fibers of
these maps:

10 ConnectedMap is what was called is-connected-map in Section 3.
11 Trunc is truncation, written τ in Section 3.



CodesFor (inl x) (α : inm p0 = inl x) = Trunc i+j (HFiber gluel0 α)
CodesFor (inr y) (α : inm p0 = inr y) = Trunc i+j (HFiber gluer0 α)

For example, this says that the type of “normal forms” for α :
inm p0 = inl x is the (i+j)-truncation of Σ (pxy0 : P x y0) gluel0 p =
α. The Σ-type represents a link pxy0 from x to y0, such that the path
in the pushout given as above is homotopic to α. The truncation is
necessary because this does not give complete information about
α; it only characterizes it up to a certain level.

In the inm case, we need a code type for x,y and p : P x y and
α : inm p0 = inm p. The condition we want is essentially that either
x0 = x and α is the determined path inm p0 = inl x0/x = inm p, or
y0 = y and α is the determined path inm p0 = inr y0/y = inm p.
However, it will be helpful for the remainder of the proof to say
this in a bit of a roundabout way. In these two cases, the new
information in ((x,y) , p) is either of the form Σ (y : Y) P x0 y
(when x = x0) or of the form Σ (x : X) P x y0 (when y = y0),
which suggests taking the disjoint union of these. But p0 itself can
have either of these types, and it will be necessary to equate these,
so we use the following wedge type, which glues inl (y0 , p0) and
inr (x0 , p0) together:

P∨ = Wedge (Σ (y : Y) P x0 y) (Σ (x : X) P x y0) (y0 , p0) (x0 , p0)

Next, we show that this wedge type does in fact determine a p and
a path α : inm p0 = inm p. We define the following map by by
pushout elimination:12

gluem : P∨� Σ (((x,y) ,p) : Z) (inm p0) = (inm p)
gluem (inl (y , px0y)) = ((x0,y) , px0y) , ! (gluel px0y) ◦ gluel p0
gluem (inr (x , pxy0)) = ((x,y0) , pxy0) , ! (gluer pxy0) ◦ gluer p0
[. . . coherence given by collapsing inverses . . . ]

Finally, we define the codes for inm to be the truncated fiber of this
map:

CodesFor (inm {x} {y} p) (α : inm p0 = inm p) =
Trunc i+j (HFiber gluem (((x , y) , p) , α)))

For example, we can inhabit this type in the inl case by giving
(y, px0y) and then showing that ((x0,y) ,px0y) = (x,y,p) (which
includes an equation x0 = x, as we said above) and that (along
this) α is homotopic to the path ! (gluel px0y) ◦ gluel p0 specified
in gluem. The advantage of this roundabout presentation is that the
type P∨ is exactly the wedge of the two spaces whose connectivity
we know by assumption, which will allow us to appeal to wedge
connectivity below.

Our definition of CodesFor so far can be summarized as follows.
First, we start with functions gluel0 and gluem and gluer0:

inm p0=inl x Σ (_,p) inm p0=inm p inm p0=inr y

P x y0 P∨ P x0 y

gluel0 {x} gluem gluer0 {y}

Then, we define each case of CodesFor to be the (i+j)-truncation
of the homotopy fiber of the corresponding map, which produces
a type that depends on the data in the bottom row (and x, p, y,
respectively):

inm p0=inl x inm p0=inm p inm p0=inr y

CodesFor inl CodesFor inm CodesFor inr

gluel p gluer p
' '

' '

12 We use the “thin” pushout for the wedge, so there is no middle construc-
tor, but we still write inl and inr instead of left and right.

Now, there are equivalences on the bottom row given by compo-
sition with the indicated glue paths, and to complete the definition
of CodesFor by pushout-recursion, we now need to construct the
two top equivalences, which relate CodesFor inm to CodesFor inl and
CodesFor inr up to the corresponding equivalences on the bottom.

Equivalences An advantage of the “fat pushout” is that these two
cases are symmetric, so we discuss only the case for gluel, which
says that the types chosen for inm and for inl agree. More formally,
after some standard calculations à la (The Univalent Foundations
Program 2013, Ch. 2) and applying univalence, we need to con-
struct an equivalence

Trunc i+j (HFiber gluem (((x , y) , pxy) , αm))
' Trunc i+j (HFiber gluel0 α l)

given α l : Path (inm p0) (inl x) and αm : Path (inm p0) (inm pxy)
and s : (gluel pxy ◦ αm) = α l, which says that α l is in the image of
the equivalence indicated in the bottom row of the above diagram.
The construction of this equivalence is the most difficult part of the
proof.

First, we decompose it into two steps:

Trunc i+j (HFiber (gluel0) α l)
' Trunc i+j (HFiber (glueml pxy) αm) -- Step 1
' Trunc i+j (HFiber gluem (((x,y) , pxy) , α)) -- Step 2

where the function glueml is given a “zig”

x y

x0 y0
p0

pxy

pxy0

of pxy : P x y and a pxy0 : P x y0 that links it to the fixed p0 : P x0 y0,
and produces a path from p0 to pxy in the pushout:

glueml : ∀ {x y} (pxy : P x y) � P x y0 � (inm p0) = (inm pxy)
glueml pxy pxy0 = ! (gluel pxy) ◦ ! (glue pxy0) ◦ gluer p0

This path is the composite

inm p0 = inr y0 = inm pxy0 = inl x = inm pxy

For the first step, first we construct equivalences

HFiber gluel0 α l
'HFiber gluel0 (gluel pxy ◦ αm)
'HFiber (glueml pxy) αm

The first equivalence is given by transporting along s. For the
second, because post-composition with a path is an equivalence, we
can pull ! (gluel pxy) ◦ - into the function part via the hfiber-at-equiv
lemma. By expanding the definitions, this gives exactly glueml.
Finally, we can add Trunc i+j to the outside of this equivalence by
univalence.

The second step is more complicated. First, both glueml and
gluem are implicitly parametrized by the fixed p0 (we use Agda’s
section mechanism for this), and glueml is additionally parametrized
by pxy, so by composing with three uses of the aforementioned
HFiber-fiberwise-to-total lemma, we can reduce the goal to

Trunc i+j (HFiber glueml-total (((x0,y0) , p0) , ((x,y) , pxy) , α))
' Trunc i+j (HFiber gluem-total (((x0,y0) , p0) , ((x,y) , pxy) , α))

where

Z×WZ = Σ (((x,y) ,p) : Z) Σ (((x’,y’) ,p’) : Z) inm p = inm p’
〈Z×Z〉×〈YX〉Z = Σ (((x,y) ,p) : Z) Σ (((x’,y’) ,p’) : Z) P x’ y

gluem-total : (Σ ((_,p) : Z) P∨ p) � Z×WZ
gluem-total (z , pw) = (z , gluem pw)

glueml-total : 〈Z×Z〉×〈YX〉Z � Z×WZ
glueml-total (z , z’ , px’y) = (z , z’ , glueml (snd z) (snd z’) px’y)



Recall that Z stands for Σ (x,y) P x y and W for Pushout X Y P. We
write Z×WZ to suggest the homotopy pullback of two copies of
the map (λ (_,p) � inm p) : Z � W, i.e. two copies of Z and a
path between them in W. We write 〈Z×Z〉×〈YX〉Z to suggest the
pullback of Z×Z with Z, where the Y component of the first Z
is shared with the third, and the X component of the second Z is
shared with the third, which reduces to the above type. While gluem
and glueml depend on p0 (and pxy), these functions act on the total
spaces (Σ-types), accepting a p0 and pxy as input, and keeping them
unchanged in the output. The reason this change is useful is that it
allows us to appeal to the fiber-top-equiv lemma, because we now
have two HFibers with the same base. Specifically, this means our
goals are

(a) Give a map m-to-ml : (Σ ((_,p) : Z) P∨ p) � 〈Z×Z〉×〈YX〉Z.

(b) Show that it is (i+j)-connected.

(c) Show that it makes the triangle (glueml-total o m-to-ml) =
gluem-total commute.

For part (a), the centerpiece is the map from the wedge to the
product, which with x0 and y0 and p0 fixed, has type

wedge-to-product : P∨� (Σ (y : Y) P x0 y)× (Σ (x : X) P x y0)

and therefore induces a map on total spaces

twtp : Σ ((_,p0) : Z) P∨ p0
� Σ (((x0,y0) ,p0) : Z) (Σ (y : Y) P x0 y)× (Σ (x : X) P x y0)

The codomain of this map is a rearrangement of 〈Z×Z〉×〈YX〉Z, just
by shuffling components of the tuple:

reassoc-l’ :
Σ (((x0,y0) ,p0) : Z) (Σ (y : Y) P x0 y)× (Σ (x : X) P x y0)
� 〈Z×Z〉×〈YX〉Z

reassoc-l’ (((x’ , y) , px’y) , ((y’ , px’y’) , (x , pxy))) =
( , pxy) , ( , px’y’) , px’y

To be able to complete part (c), we also need to precompose with
the following on the domain

switchr : (Σ ((_,p) : Z) � P∨ p) � (Σ ((_,p) : Z) P∨ p)
switchr (z , inl (y,p)) = (z , inl (y,p))
switchr (((x0,y0) ,p0) , inr (x,p)) = (((x,y0) ,p) , inr (x0 , p0))
[. . . coherence given by glue . . . ]

which leaves the element the same in the inl case, but swaps the inr
component with the outer element of Z. Given these, we define

m-to-ml : (Σ ((_,p) : Z) P∨ p) � 〈Z×Z〉×〈YX〉Z
m-to-ml = reassoc-l’ o twtp o switchr

Next we need to do part (b), showing that m-to-ml is (i+j)-
connected. First, by wedge connectivity, and using the connec-
tivity assumptions about Σ (y : Y) P x0 y and Σ (x : X) P x y0,
the map wedge-to-prod is (i+j)-connected. Next, by the lemma
fiberwise-to-total-connected, twtp is (i+j)-connected. Finally, we
can show that reassoc-l’ and switchr are both equivalences, essen-
tially because they just shuffle data around structurally without los-
ing any. Thus, because the composition of an n-connected map with
an equivalence is also n-connected, m-to-ml is (i+j)-connected.

Finally, part (c) is a routine calculation, consisting of a wedge-
induction on the domain and some reduction/path algebra. It con-
sists of about 40 lines of code, which would be easy to understand
for the interested reader.

This concludes our construction of CodesFor.

4.2 Contractibility
Next, we show that the codes fibration is contractible, and that this
implies the Blakers–Massey theorem. For most of this section, we
assume fixed x0 and y0 and p0 : P x0 y0 as above.

First, we show that CodesFor w α always has an element. To
begin, we can construct an element of CodesFor (inm p0) refl by
choosing one side of the wedge, and then giving a proof sectioncoh
of gluem (y0 , p0) = (((x0,y0) ,p0) , refl), which is just collapsing
inverses:13

sectionZ : CodesFor (inm p0) refl
sectionZ = [ inl (y0 , p0) , sectioncoh ]

This extends to an element of CodesFor w α for any w and α :
inm p0 = w

section : (w : W) (α : inm p0 = w) � (CodesFor w α)
section w α = transport CodesFor’ (pair= α connOver) sectionZ

by transporting in CodesFor’, which is the uncurrying of CodesFor,
with α (and a bit of adjustment for the path position: we have
pair= α connOver : (inm p0,refl) = (w,α)). This is essentially the
same as the path induction we did for this step above, though it is
phrased in a way that facilitates the later calculations.

Next, we show that this section is also a retraction, i.e. that when
c is a code for α, then section α = c. It turns out that it will be
enough to do this only for the case where w is inr y:

retraction-r : (y : Y) (α : (inm p0) = (inr y))
(c : CodesFor (inr y) α) � (section (inr y) α) = c

This is a rather involved calculation (about 125 lines of code),
using truncation induction, path induction, some reductions and
path algebra, and the definitions of the equivalences in the cases
of CodeFor for gluel and gluer. This step would be simpler in a type
theory with better computational properties.

Together, these show CodesFor is contractible for inr:

contr-r : (y : Y) (α : (inm p0) = (inr y))
� Contractible (CodesFor (inr y) α)

contr-r y p = section (inr y) α , retraction-r y α

By reducing the pushout elimination defining it, CodesFor (inr y)α

is Trunc i+j (HFiber gluer0 α). Therefore, it is immediate by ex-
panding the definition of a connected map that

(y : Y) � ConnectedMap i+j (gluer0 {y})

To complete the theorem, we would like to rephrase this as con-
nectivity of the composite glue map that constructs a path inl x =
inr y, instead of gluer0. First, by a bit of path algebra, we have

(y : Y) � glue {x0} {y} = (λ z � z ◦ ! (gluel p0)) o gluer0

because

(gluer0 pxy0) ◦ ! (gluel p0)
= (glue pxy0 ◦ gluel p0) ◦ ! (gluel p0)
= glue pxy0

Therefore, because composition with a path is an equivalence,
and precomposition with an equivalence preserves connectivity, we
have

(y : Y) � ConnectedMap i+j (glue {x0} {y})

At the start of this subsection, we assumed x0 and y0 and p0 :
P x0 y0. Making these assumptions explicit in the above type, we
have now constructed

(x0 : X) (y0 : Y) (p0 : P x0 y0) (y : Y)
� ConnectedMap i+j (glue {x0} {y})

The last step is to discharge the assumption of y0 and p0, to get our
overall result

blakers-massey : (x : X) (y : Y) � ConnectedMap i+j (glue {x} {y})

One of our two connectivity assumptions is that for any x, the
type Σ (y0 : Y) P x y0 is i-connected. By definition, this means that

13 We write [ x ] for the proj x constructor of the truncation type.



Trunc i (Σ (y0 : Y) P x y0) is contractible, so in particular it has an
element. We assumed that i is at least −1, and n-connectivity of a
map is a (−1)-type (because it is contractibility of something), and
therefore it is an i-type, because i>−1 and the truncation levels can
be raised. Therefore, we can eliminate the truncation, and get a y0
and p0 that are related to the given x, producing the inputs to the
previous step.

5. Conclusion
In this paper, we have described two computer-checked proofs of
the Blakers–Massey connectivity theorem using homotopy type
theory in Agda. Each mechanization of the theorem itself is about
700 lines of code, though the first is less dense (its character count is
about 88% of the second proof), and also uses fewer lemmas from
a library. The first proof is more direct in type theory, in the sense
that it does not introduce any intermediate higher inductive types,
like the wedge type used in the second proof. However, more of the
first proof contains more calculations that are difficult to describe in
traditional homotopy-theoretic terms. In the second proof, we were
better able to describe the construction of the codes equivalences
in traditional mathematical language. The proofs that the codes
fibrations are contractible are very similar in both cases, though
the more mathematical description of the codes equivalences in
the second proof results in a more complex calculation at this
stage, because there are more intermediate steps to reduce. These
two formalizations illustrate the advantages and disadvantages of
different ways of working in homotopy type theory.

The result developed in this paper suggests future work both
on formalization and on developing new mathematics using the
presented techniques. For example, Anel et al. (2016) have gen-
eralized the proof of the Blakers–Massey theorem presented here
by abstracting the facts about connectedness/truncation involved.
Just as the theorem presented here gives isomorphism of homotopy
groups in a range, the generalized theorem can be applied to the
Goodwillie Calculus to obtain a new result about isomorphism on
derivatives in a range. While this concrete application would not be
easy to formalize in type theory, we plan to investigate a formaliza-
tion of the abstract generalized theorem in future work.
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