A Mechanization of the B'akers-Massey Connectivity Theorem ${ }^{i n}$ Homotopy Type Theory

Favonian @ Carnegie Mellon University
Eric Finster@ LIX/École Polytechnique
Daniel R. Licata @ Wesleyan University
Peter LeFanu Lumsdaine @ Stockholm University

Homotopy Type Theory

Do homotopy theory in type theory
Hopf fibrations, Eilenberg-Mac Lane spaces,
van Kampen theorem [HoTT book], Mayer-Vietoris theorem [Cavallo 2014], and more...

- Mechanization
- Translations to many models
\longrightarrow new research ex: in Goodwille calculus
[Anel, Biedermann, Finster and Joyal 2016]

Every type is an ∞-groupoid

\therefore

Every type is an ∞-groupoid

Every type is an ∞-groupoid

Every type is an ∞-groupoid

Functions preserve structures

Types and Spaces

A
$a: A$
$f: A \rightarrow B \quad$ Function

Space
Point
Continuous
Mapping
$C: A \rightarrow$ Type
$C(a)$
$p: a={ }_{A} b \quad$ Identification Path

Blakers-Massey is for calculating higher homotopy groups of pushouts

Blakers-Massey is for calculating higher homotopy groups of pushouts
 mappings from spheres
 to the space

Blakers-Massey is for calculating higher homotopy groups of pushouts
 mappings from spheres to the space
 two spaces glued together

Homotopy Groups

 $\{$ mappings from the n-sphere \}
"higher" if $n>1$

First Homotopy Group

Mappings from the circle to A
= Images of the circle in A
$=($ Directed $)$ loops in A

First Homotopy Group (= directed loops in the space)

How many ways to go from a to a ?

First Homotopy Group (= directed loops in the space)

How many ways to go from a to a ?

First Homotopy Group (= directed loops in the space)

How many ways to go from a to a ?

First Homotopy Group (= directed loops in the space)

How many ways to go from a to a ?

First Homotopy Group (= directed loops in the space)

How many ways to go from a to a ?

Connectivity

Connectivity

$\pi_{2}(\mathrm{~A}) \longrightarrow \pi_{2}(\mathrm{~B})$
$\pi_{1}(\mathrm{~A}) \longrightarrow \pi_{1}(\mathrm{~B})$

Connectivity

$\pi_{2}(\mathrm{~A}) \longrightarrow \pi_{2}(\mathrm{~B})$
$\pi_{1}(\mathrm{~A}) \longrightarrow \pi_{1}(\mathrm{~B})$

Connectivity

f is n-connected
if inducing isomorphisms up to n

Homotopy Groups of Spheres

Homotopy Groups of Spheres

	1	2	3	4	5	6	7	8	9	10
S^{1}	Z	0	0	0	0	0	0	0	0	0
S^{2}	0	Z	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
S^{3}	0	0	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
S^{4}	0	0	0	Z	Z_{2}	Z_{2}	$Z \times Z_{12}$	Z_{2}^{2}	Z_{2}^{2}	$Z_{24} \times Z_{3}$
S^{5}	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	Z_{2}	Z_{2}
S^{6}	0	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	0

Homotopy Groups of Spheres

	1	2	3	4	5	6	7	8	9	10
$\mathrm{~S}^{1}$	Z	0	0	0	0	0	0	0	0	0
$\mathrm{~S}^{2}$	0	Z	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
$\mathrm{~S}^{3}$	0	0	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
$\mathrm{~S}^{4}$	0	0	0	Z	Z_{2}	Z_{2}	$\mathrm{Z} \times \mathrm{Z}_{12}$	Z_{2}^{2}	Z_{2}^{2}	$\mathrm{Z}_{24} \times \mathrm{Z}_{3}$
$\mathrm{~S}^{5}$	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	Z_{2}	Z_{2}
$\mathrm{~S}^{6}$	0	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	0

Homotopy Groups of Spheres

	1	2	3	4	5	6	7	8	9	10
$\mathrm{~S}^{1}$	Z	0	0	0	0	0	0	0	0	0
$\mathrm{~S}^{2}$	0	Z	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
$\mathrm{~S}^{3}$	0	0	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
$\mathrm{~S}^{4}$	0	0	0	Z	Z_{2}	Z_{2}	$\mathrm{Z} \times \mathrm{Z}_{12}$	Z_{2}^{2}	Z_{2}^{2}	$\mathrm{Z}_{24} \times \mathrm{Z}_{3}$
$\mathrm{~S}^{5}$	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	Z_{2}	Z_{2}
$\mathrm{~S}^{6}$	0	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	0

Homotopy Groups of Spheres

	1	2	3	4	5	6	7	8	9	10
$\mathrm{~S}^{1}$	Z	0	0	0	0	0	0	0	0	0
$\mathrm{~S}^{2}$	0	Z	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
$\mathrm{~S}^{3}$	0	0	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
$\mathrm{~S}^{4}$	0	0	0	Z	Z_{2}	Z_{2}	$\mathrm{Z} \times \mathrm{Z}_{12}$	Z_{2}^{2}	Z_{2}^{2}	$\mathrm{Z}_{24} \times \mathrm{Z}_{3}$
$\mathrm{~S}^{5}$	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	Z_{2}	Z_{2}
$\mathrm{~S}^{6}$	0	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	0

Homotopy Groups of Spheres

	1	2	3	4	5	6	7	8	9	10
$\mathrm{~S}^{1}$	Z	0	0	0	0	0	0	0	0	0
$\mathrm{~S}^{2}$	0	Z	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
$\mathrm{~S}^{3}$	0	0	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
$\mathrm{~S}^{4}$	0	0	0	Z	Z_{2}	Z_{2}	$\mathrm{Z} \times \mathrm{Z}_{12}$	Z_{2}^{2}	Z_{2}^{2}	$\mathrm{Z}_{24} \times \mathrm{Z}_{3}$
$\mathrm{~S}^{5}$	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	Z_{2}	Z_{2}
$\mathrm{~S}^{6}$	0	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	0

Homotopy Groups of Spheres

	1	2	3	4	5	6	7	8	9	10
$\mathrm{~S}^{1}$	Z	0	0	0	0	0	0	0	0	0
$\mathrm{~S}^{2}$	0	Z	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
$\mathrm{~S}^{3}$	0	0	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
$\mathrm{~S}^{4}$	0	0	0	Z	Z_{2}	Z_{2}	$\mathrm{Z} \times \mathrm{Z}_{12}$	Z_{2}^{2}	Z_{2}^{2}	$\mathrm{Z}_{24} \times \mathrm{Z}_{3}$
$\mathrm{~S}^{5}$	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	Z_{2}	Z_{2}
$\mathrm{~S}^{6}$	0	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	0

Homotopy Groups of Spheres

	1	2	3	4	5	6	7	8	9	10
$\mathrm{~S}^{1}$	Z	0	0	0	0	0	0	0	0	0
$\mathrm{~S}^{2}$	0	Z	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
$\mathrm{~S}^{3}$	0	0	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
$\mathrm{~S}^{4}$	0	0	0	Z	Z_{2}	Z_{2}	$\mathrm{Z} \times \mathrm{Z}_{12}$	Z_{2}^{2}	Z_{2}^{2}	$\mathrm{Z}_{24} \times \mathrm{Z}_{3}$
$\mathrm{~S}^{5}$	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	Z_{2}	Z_{2}
$\mathrm{~S}^{6}$	0	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	0

Homotopy Groups of Spheres

	1	2	3	4	5	6	7	8	9	10
$\mathrm{~S}^{1}$	Z	0	0	0	0	0	0	0	0	0
$\mathrm{~S}^{2}$	0	Z	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
$\mathrm{~S}^{3}$	0	0	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
$\mathrm{~S}^{4}$	0	0	0	Z	Z_{2}	Z_{2}	$\mathrm{Z} \times \mathrm{Z}_{12}$	Z_{2}^{2}	Z_{2}^{2}	$\mathrm{Z}_{24} \times \mathrm{Z}_{3}$
$\mathrm{~S}^{5}$	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	Z_{2}	Z_{2}
$\mathrm{~S}^{6}$	0	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	0

Blakers-Massey is for calculating

 higher homotopy groups of pushouts mappings from spheres two spaces to the space glued togetherWe will show homotopy groups of spheres eventually stabilize

Pushouts

Disjoint sums with gluing

14

Pushouts

Disjoint sums with gluing

14

Pushouts

Disjoint sums with gluing

14

Pushouts

Disjoint sums with gluing

14

Pushouts

Disjoint sums with gluing

14

15

15

Blakers-Massey Theorem

Spheres as Pushouts

1 -sphere (circle)

Spheres as Pushouts

1 -sphere (circle)

Spheres as Pushouts

2 -sphere

Spheres as Pushouts $(n+1)$-sphere from n-sphere

Blakers-Massey on Spheres

21

21

21

Blakers-Massey on Spheres

22

Blakers-Massey on Spheres

Homotopy Groups of Spheres

	1	2	3	4	5	6	7	8	9	10
$\mathrm{~S}^{1}$	Z	0	0	0	0	0	0	0	0	0
$\mathrm{~S}^{2}$	0	Z	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
$\mathrm{~S}^{3}$	0	0	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
$\mathrm{~S}^{4}$	0	0	0	Z	Z_{2}	Z_{2}	$\mathrm{Z} \times \mathrm{Z}_{12}$	Z_{2}^{2}	Z_{2}^{2}	$\mathrm{Z}_{24} \times \mathrm{Z}_{3}$
$\mathrm{~S}^{5}$	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	Z_{2}	Z_{2}
$\mathrm{~S}^{6}$	0	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	0

Homotopy Groups of Spheres

	1	2	3	4	5	6	7	8	9	10
$\mathrm{~S}^{1}$	Z	0	0	0	0	0	0	0	0	0
$\mathrm{~S}^{2}$	0	Z	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
$\mathrm{~S}^{3}$	0	0	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}
$\mathrm{~S}^{4}$	0	0	0	0	Z	Z_{2}	Z_{2}	$\mathrm{Z} \times \mathrm{Z}_{12}$	Z_{2}^{2}	Z_{2}^{2}
$\mathrm{Z}_{24} \times \mathrm{Z}_{3}$										
$\mathrm{~S}^{5}$	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	Z_{2}	Z_{2}
$\mathrm{~S}^{6}$	0	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	0

Two Mechanized Proofs

 one of direct stylegoo.gl/Yt46UZ
one with ∞-topos in mind
goo.gl/Iy8iYB

Conclusion

A new proof of Blakers-Massey which is mechanized in Agda and leads to new math research

See our paper for more details!

data Pushout (A B C : Type) A

($\mathrm{g}: \mathrm{C} \rightarrow \mathrm{B}$) : Type where
left : A \rightarrow Pushout A B C f g
right : B \rightarrow Pushout A B C f g
glue : ($\mathrm{c}: \mathrm{C}$) \rightarrow left (f c) $==$ right (g c)

Sphere : $\mathbb{N} \rightarrow$ Type
Sphere $0=$ Bool

Sphere (S n) =
Pushout Unit Unit (Sphere n) ($\left.\lambda_{-} \rightarrow \mathrm{tt}\right)\left(\lambda_{-} \rightarrow \mathrm{tt}\right)$ $B \quad C \quad f \quad g$

