W\ .
®

/

info: you are at WITS
info: j.w.w. Reed Mullanix
warning: favonlia on stage

A typical implementation day

Exhausted after listening to all POPL talks;
no energy to implement error handling until...

A typical implementation day

Exhausted after listening to all POPL talks;
no energy to implement error handling until...

Exception: Failure "type error”.
Raised at Stdlib.failwith in file "std
lib.m1", line 29, characters 17-33
Called from <unknown> in file "./test.
ml", line 12, characters 9-17
Called from Topeval.load_lambda in fil
e "toplevel/byte/topeval.ml", line 89,
characters 4-14

00d

What constitutes a diagnostic

008 :
What constitutes a diagnostic

Should the program terminate now?

d
. g00™ ¢, .
What constitutes a.diagnostic
Should the program terminate now?

How seriously should the user take it?
warning, error, or info?

00d o o
What constitutes a diagnostic

Should the program terminate now? ¢> these two
t?

. | two
How seriously should the user take i are different
warning, error, or info?

00d o o
What constitutes a diagnostic

Should the program terminate now? ¢> these two
t?

. | two
How seriously should the user take i are different
warning, error, or info?

A Google-able code "E0411 site:stackovertlow.com"

00d o o
What constitutes a diagnostic

Should the program terminate now? « these two
o

. | two
How seriously should the user take i are different
warning, error, or info?

A Google-able COde "E0411 site:stackovertlow.com"

A user-perceived stack backtrace
not call backtrace for debugging! diagnostics are for users, not you!

00d o o
What constitutes a diagnostic

Should the program terminate now? «) these two

. | | |
How seriously should the user take it? are different
warning, error, or info?

A Google-able COde "E0411 site:stackovertlow.com"

A user-perceived stack backtrace
not call backtrace for debugging! diagnostics are for users, not you!

Allowing multiple spans (locations in source files)

Structured or unstructured?

Structured or unstructured?

100% structured: emit (TypeError ("List.rev", tm, tp))

Structured or unstructured?

100% structured: emit (TypeError ("List.rev", tm, tp))
0% structured: emit "type error: List.rev is evil"

Structured or unstructured?

100% structured: emit (TypeError ("List.rev", tm, tp))
0% structured: emit "type error: List.rev is evil"

50% structured: emit TypeError "List.rev is evil"

Structured or unstructured?

100% structured: emit (TypeError ("List.rev", tm, tp))
0% structured: emit "type error: List.rev is evil"

50% structured: emit TypeError "List.rev is evil"

'::' Some structuredness, especially the classification, helps users
identity (= Google) relevant help documents

Structured or unstructured?

100% structured: emit (TypeError ("List.rev", tm, tp))
0% structured: emit "type error: List.rev is evil"

50% structured: emit TypeError "List.rev is evil"

'::' Some structuredness, especially the classification, helps users
identity (= Google) relevant help documents

':3 However, full structuredness is challenging for very ad-hoc messages

Think about all possible errors from parsing

Structured or unstructured?

100% structured: emit (TypeError ("List.rev", tm, tp))
0% structured: emit "type error: List.rev is evil"

50% structured: emit TypeError "List.rev is evil"

'::' Some structuredness, especially the classification, helps users
identity (= Google) relevant help documents

':3 However, full structuredness is challenging for very ad-hoc messages

Think about all possible errors from parsing

':3 Which one? We support both the 100% and 50% style!

Compositionality

[t should be easy to use a library that also uses asai

interface

main program

Compositionality

[t should be easy to use a library that also uses asai

interface interface

main program

Compositionality

[t should be easy to use a library that also uses asai

interface

interface interface

main program

Unicode Support

abcH X EA

Unicode Support

K‘ o
a b C Unicode characters
(scalar values)

Unicode Support

A
. M
a C >< Unicode characters
(scalar values)
F+ZWJ+

Unicode Support
Unicode characters

3
abcHXEA ..
F+ZWJ+

No easy way to predict the visual widths
Your fonts, terminals, and maybe locales matter

Many programs use (broken) heuristics

Unicode Support

2 vec![(), ()].iter().sum::<i32>();

|
| AAAAAKAAAAKAAANANAY ——— required by a bound introduced by
|
|

the trait “Sum<&()>" is not implemented for ‘i32°

Unicode Support

| . .sum: :<i32>();
et ® --- required by a bound introduced by
|
|

the traj " 1s not implemented for "i32°

You cannot know the visual width!

If it fails for emojis, it fails. Period.

Tutorial-Oriented Design

Quickstart Tutorial

This tutorial is for an implementer (you!) to adopt this library
as quickly as possible. We will assume you are already
familiar with OCaml and are using a typical OCaml package
structure.

Define the Message Type

The first step is to create a file Reporter.ml with the
following template:

module Message =
struct

(#* The type of all messages used in your
application. =)

type t =
I (% ... %)
I (x oo %)
| (% ... %)

(** The default severity level of diagnostics with

a particular message. *)
let default_severity : t ->
Asai.Diagnostic.severity =

function

| (+ ... *) -> Bug

| (¥ ... %) -> Error

| (* ... *) -> Warning

(#* A short, concise, ideally Google-able string
representation for each message. =)
let short_code : t -> string =

function

| (% ... %) -> "E0001"
| (% ... %) -> "E0002"
| (% ... *) -> "EQ003"

end

(#* Include all the goodies from the asai library.
*)

include Asai.Reporter.Make(Message)

The most important step is to define the type of messages. It
should be a meaningful classification of all the diagnostics
you want to send to the end user. For example,
UndefinedSymbol could be a reasonable message about
failing to find the definition of a symbol. TypeError could be
another reasonable message about ill-typed terms. Don't
worry about missing details in the message type---you can
attach free-form text, location information, and additional
remarks to a message. Once you have defined the type of all
messages, you will have to define two functions
default_severity and short_code:

1. default_severity: Severity levels describe how serious
the end user should take your message (is it an error or a
warning?). It seems diagnostics with the same message
usually come with the same severity level, so we want
you to define a default severity level for each message.
You can then save some typing later when sending a
diagnostic.

https://redprl.org/asai/asai/quickstart.html

Tutorial-Oriented Design

Quickstart Tutorial

This tutorial is for an implementer (you!) to adopt this library
as quickly as possible. We will assume you are already
familiar with OCaml and are using a typical OCaml package
structure.

Define the Message Type

The first step is to create a file Reporter.ml with the
following template:

module Message =
struct

(#* The type of all messages used in your
application. =)

type t =
I (x oo %)
I (xooee %)
I (x ... %)

https://redprl.org/asai/asai/quickstart.html
Write a tutorial to improve your design

(** The default severity level of diagnostics with

a particular message. *)
let default_severity : t ->

Asai.Diagnostic.severity =

function

| (+ ... *) -> Bug

| (+ ... *) -> Error

| (*+ ... *) -> Warning

(#* A short, concise, ideally Google-able string
representation for each message. =)
let short_code : t -> string =

function

| (» ... %) -> "EQ001"
| (% ... %) -> "EQOO2"
| (% ... *) -> "EQ003"

end

(#* Include all the goodies from the asai library.
*)

include Asai.Reporter.Make(Message)

The most important step is to define the type of messages. It
should be a meaningful classification of all the diagnostics
you want to send to the end user. For example,
UndefinedSymbol could be a reasonable message about
failing to find the definition of a symbol. TypeError could be
another reasonable message about ill-typed terms. Don't
worry about missing details in the message type---you can
attach free-form text, location information, and additional
remarks to a message. Once you have defined the type of all
messages, you will have to define two functions
default_severity and short_code:

1. default_severity: Severity levels describe how serious
the end user should take your message (is it an error or a
warning?). It seems diagnostics with the same message
usually come with the same severity level, so we want
you to define a default severity level for each message.
You can then save some typing later when sending a
diagnostic.

rubber
duck

design™

Related OCaml Work

asal Grace (just released)

representaiton LSP-style Rust-style
(type of diagnostics)

Related OCaml Work

asal Grace (just released)

representaiton LSP-style Rust-style
(type of diagnostics)

generation algebraic effects

Related OCaml Work

asal Grace (just released)
representaiton LSP-style Rust-style
(type of diagnostics)
generation algebraic effects

rendering emoji-focused Rust-inspired

Related OCaml Work

asal Grace (just released)
representaiton LSP-style Rust-style
(type of diagnostics)
generation algebraic effects
rendering emoji-focused Rust-inspired

Current plan: bridge these two libraries

Success Stories

Success Stories
algaett: our prototype to check things combine

Success Stories

algaett: our prototype to check things combine

forester: Jon Sterling's tool to generate his website
(not a proof assistant!)

Success Stories

algaett: our prototype to check things combine

forester: Jon Sterling's tool to generate his website
(not a proof assistant!)

(WIP): Mike Shulman's type checker for HOTT

Success Stories

algaett: our prototype to check things combine

forester: Jon Sterling's tool to generate his website
(not a proof assistant!)

(WIP): Mike Shulman's type checker for HOTT
(???): (Your next tool here)

Success Stories

algaett: our prototype to check things combine

forester: Jon Sterling's tool to generate his website
(not a proof assistant!)

(WIP): Mike Shulman's type checker for HOTT
(???): (Your next tool here)

https://ocaml.org/p/asai

