new paths

univalence

loop

A

loop

loop

?
I know how to guarantee a combinatorial structure has enough paths.

My group knows how to bring that into the design of type theory.

Guillaume Brunerie and Daniel R. Licata are also pioneers.
1. What are the types? (form)
2. What are the constructors? (intro)
3. How to consume an element? (elim)
4. What if a constructor is consumed? (β)
5. Uniqueness principle? (η)
6. How to compose stuff? (Kan operators)
Homogeneous Compositions

not changing type
should work with substitution [BCH]
variant: diagonal faces and alternative filling directions
Coercion
variant 1: alternative coercion directions
variant 2: freezing parts of the input

(used in cubical Agda)
With these two operators every type has enough paths
They also give heterogeneous compositions.
<table>
<thead>
<tr>
<th>Major Variants</th>
<th>[CCHM+CHM]</th>
<th>[AFH+ABCFHL+CH]</th>
</tr>
</thead>
<tbody>
<tr>
<td>algebra on \mathbb{I}</td>
<td>0, 1, \wedge, \vee, \sim, De Morgan</td>
<td>0, 1</td>
</tr>
<tr>
<td>homogeneous composition</td>
<td>standard</td>
<td>variant</td>
</tr>
<tr>
<td>coercion</td>
<td>variant 2</td>
<td>variant 1</td>
</tr>
<tr>
<td>ready-to-use proof assistants</td>
<td>cubical Agda</td>
<td>redtt</td>
</tr>
</tbody>
</table>
\[A : U \]

\[M : A \]

\[\begin{align*}
 j=0, & \quad k:\mathbb{I} \vdash N_1 : A \quad [k=0 \mapsto M] \\
 i=1, & \quad k:\mathbb{I} \vdash N_2 : A \quad [k=0 \mapsto M, j=0 \mapsto N_1] \\
 j=1, & \quad k:\mathbb{I} \vdash N_3 : A \quad [k=0 \mapsto M, i=1 \mapsto N_2]
\end{align*} \]

\[\begin{align*}
 \text{(faces are unordered in CCHM+CHM)}
\end{align*} \]

\[\text{hcomp}^k A \quad [j=0 \mapsto N_1, i=1 \mapsto N_2, j=1 \mapsto N_3] \]

\[M : A \]

\(\text{homogeneous} \)
\[\text{comp}^k A \left[\ldots \right] M : A[1/k] \]

\[k : \mathbb{I} \vdash A : U \]

\[M : A[0/k] \]
transpj A (\sim i) M : A[1/j]

this represents (\sim i = 1) = (i = 0)
in general, r:\mathbb{I} to represent r = 1
Constraints in Contexts

\(\varphi \vdash M : A \)

\[r := 0 \mid 1 \mid i \mid r_1 \land r_2 \mid r_1 \lor r_2 \mid \sim r \quad \text{(De Morgan)} \]

\[\varphi := \text{false} \mid \text{true} \mid (r = 0) \mid (r = 1) \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \]
\(r := 0 \mid 1 \mid i \mid r_1 \land r_2 \mid r_1 \lor r_2 \mid \sim r \) (De Morgan)

\(\varphi := \text{false} \mid \text{true} \mid (r = 0) \mid (r = 1) \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \)

\(r \mapsto r=1 \) preserves \(\land, \lor, \) and \(\sim \) where \(\sim r=1 \) means \(r=0 \)

Any \(\varphi \) is equivalent to \(r=1 \) for some \(r \)

\(\text{e.g., } (i=0) \lor (i=1) = (\sim i=1) \lor (i=1) = (\sim i \lor i)=1 \)

\(\text{e.g., } \text{trapns}^j A \ r M \)
Restricted by Partial Elements

\[M : A [\varphi \mapsto N] \]

\[M : A \text{ and } \varphi \vdash M \equiv N : A \]
2. What are the constructors? (intro)
3. How to consume an element? (elim)
4. What if a constructor is consumed? (β)
5. Uniqueness principle? (η)

6. hcomp and transp (and thus comp)

✓ Gives us all the paths
✓ Definable for every type
\[
\begin{align*}
M : T & \quad \phi, i : \exists \vdash N : T \\
\text{hcomp}^i T [\phi \mapsto N] M & \equiv M : T
\end{align*}
\]

\[
\begin{align*}
M : T & \quad r : \exists \\
\text{transp}^i T r M & \equiv M : T
\end{align*}
\]
new
paths

univalence
loop

hcomp
transp

✓ the unit
the empty type
functions
pairs
paths
the circle
universes

(many others)