
CSCI 8980 Higher-Dimensional Type Theory

Lecture Notes

Dawn Michaelson, Jack Perisich

February 25, 2020

1 Universe

To internalize the Γ ` � type judgment, we introduce the universe typeU .

This can be viewed as the “type of types”. We replace the original judgment

with Γ ` � : U . We can make this replacement in all our existing rules. For

example, we originally had the following rule for dependent function types:

Γ ` � type Γ, G : � ` � type

Γ ` ∏
G:�

� type

We can replace each judgment with a judgment that the given type has the

type of the universe, giving us a new rule:

Γ ` � : U Γ, G : � ` � : U
Γ ` ∏

G:�
� : U

Doing this in all rules gives a system where we do not need the original

is-type judgment.

2 Inconsistency

Because U is a type, we should have a rule:

Γ ` U : U

With this rule, we can prove inconsistency, meaning a closed term of the

empty type. This is the Burali-Forti Paradox.

1

1. Consider types with a transitive, well-founded order. We will write

this as well-founded(�). This means that the type has a minimal

element in any non-empty subset.

2. We define a type , :=
∑
�:U

well-founded(�). This is a type which

contains all well-founded types.

3. This type, is well-founded with embedding as the relation.

• An embedding is an order-preserving function with a strict upper

bound. If we have types with ordering relations (�, <�) and
(�, <�) with an embedding 5 : � → �, 5 will map ordered

elements from � to the same order in �, and there is some 1 such

that 5 (0) <� 1 for any 0.

We can prove an embedding is transitive and well-founded. Then we

have (,, embedding) :, .

4. Every well-founded type (�, <�) can be embedded into, . We can

define a map 0 ↦→ ∑
0′:�

0′ <� 0.

5. Because of the previous point, , can then be embedded into itself,

yielding, <, , . This contradicts that embedding is well-founded.

This was originally done in type theory by Girard [2]. It was later improved

by Coquand [1] and Hurkens [3].

3 Repairing Universes

To remove this inconsistency, the universe U becomes a hierarchy of uni-

versesU0 ,U1 ,U2 , We have two rules for these universes:

Γ ` U8 : U8+1
Γ ` � : U8

Γ ` � : U8+1

A universe is contained in the next universe above it, and the hierarchy is

cumulative, so any type is contained in all the universes above it.

How does this work when a rule has multiple premises judging that

types are members of some universe? Above, before introducing a universe

hierarchy, we had a rule for dependent function types:

Γ ` � : U Γ, G : � ` � : U
Γ ` ∏

G:�
� : U

2

There are two options for writing such a rule in the hierarchy of universes.

The first is to take the least upper bound of the indices of the premises (8 t 9)
as the index of the conclusion:

Γ ` � : U8 Γ, G : � ` � : U9

Γ ` ∏
G:�

� : U8t9

The second is to have the same index for both premises and the conclusion:

Γ ` � : U8 Γ, G : � ` � : U8

Γ ` ∏
G:�

� : U8

Because we have the rule for raising a type from one universe to the next,

we can raise one premise to match the other, then use this rule, so neither

rule is more powerful, and it is simply a stylistic choice.

With this hierarchy and this principle for creating judgments of types

being in universes, we are unable to embed, in itself, only in a version

of , for a higher universe. This is because the definition of the type ,

requires the following rule for placing it in a universe, once we have the

universe hierarchy:

Γ ` U8 : U9 Γ, � : U8 ` well-founded(�) : U9

Γ ` ∑
�:U8

well-founded(�) : U9

Because U8 , the type of �, is an element of U9 , 8 < 9, and this dependent

pair type cannot be an element of itself. Because of this, we cannot recreate

the Burali-Forti Paradox with these rules.

In practice, proofs which do not distinguish between universes in the

hierarchy, acting as though the judgment Γ ` U : U holds, can usually have

universe levels inserted consistently. For this reason, indices are often not

shown when they do not affect the proof.

4 Univalence Principle

The univalence principle is roughly that equivalent things should be identi-

fied. A good approximation of this is:

(� ' �) ' IdU (�; �)

3

This requires that we define equivalences � ' �. We define this as

(� ' �) :=
∑
5 :�→�

is-equiv(5)

This, in turn, requires us to give a good definition of is-equiv().

4.1 Function Equivalence

A quasi-inverse of a function 5 : �→ � (qinv(5)) includes

• 6 : � → �

• & :
∏
H:�

Id�(5 (6(H)); H)

• � :
∏
G:�

Id�(6(5 (G)); G)

This may be formulated as a rather large dependent pair type.

For a good definition of is-equiv(5), we want two things:

1. The definition should be logically equivalent to qinv(5) (either one can
be derived given the other)

2. is-prop(is-equiv(5))
This requires that is-equiv(5) has at most one element. The definition

of qinv(5) fails this requirement.

We give two possible types to fulfill the requirements on is-equiv(5):

1. Half Adjoint Equivalence (is-hae(5))
This includes 6, &, and � as in the quasi-inverse, but it also includes a

fourth element �:

� :
∏
G:�

Id(ap 5 (�(G)); &(5 (G)))

This �may be thought of as ensuring that � and & are coherent in some

way.

It is clear how to derive qinv(5) given is-hae(5), since we already have

the 6, &, and �. The other direction of the equivalence is much more

difficult to prove.

4

Rather than �, we could have defined �′:

�′ :
∑
H:�

Id(�(6(H)); ap6(&(H)))

This definition is dual to the definition of �. It is the other “half” in the

name of the type. If the definition required both � and �′, it would not

satisfy the requirement of is-prop(is-equiv(5)), and we would require

a further element to show that � and �′ were coherent.

2. is-equiv(5) := ∏
H:�

is-contr(∑
G:�

Id(5 (G); H))

The inner dependent pair type is defining the pre-image of H (in

homotopy theory, this is the “fiber over H” or that “all fibers are

contractible”). There is only one element in the pre-image, which gives

an inverse function.

Both of these definitions are acceptable. In Agda, we prefer half adjoint

equivalence because it is easier to use.

A difficulty is that proving is-prop(is-equiv(5)) for many definitions

requires function extensionality, which cannot be provedwithout univalence.

We choose a definition of is-equiv() and use it to define univalence, then

prove is-prop() for it assuming univalence.

4.2 Univalence and Function Extensionality

A precise formulation of univalence:

Define idtoequiv : IdU (�; �) → � ' �

Axiom: is-equiv(idtoequiv)
idtoequiv := �?.J(�.a proof of is-equiv(83�); ?)

Wedefine function extensionality as follows, using it toprove is-prop(is-equiv()).

(Strong) Function Extensionality

Define happly : Id(5 ; 6) → ∏
G:�

Id(5 (G); 6(G))

Axiom: is-equiv(happly)

Some points to note:

1. By including these two axioms, we are breaking harmony. This is fixed

by cubical type theory.

5

2. Univalence can be viewed as an extensionality principle for universes.

3. Univalence implies function extensionality, so we don’t need the axiom

for happly.

4. Univalence implies ¬axiom k and ¬LEM. If we had the law of the

excluded middle, that would imply that every type has decidable

equality, which would in turn imply that every type is a set. This is a

contradiction, sinceU is not a set.

References

[1] Thierry Coquand. “An Analysis of Girard’s Paradox”. In: In Symposium
on Logic in Computer Science. IEEEComputer Society Press, 1986, pp. 227–

236.

[2] J. Girard. “Interprétation fonctionelle et élimination des coupures de

l’arithmétique d’ordre supérieur”. PhD thesis. Université Paris VII,

1972.

[3] Antonius J. C. Hurkens. “A simplification of Girard’s paradox”. In: Typed
Lambda Calculi and Applications. Ed. by Mariangiola Dezani-Ciancaglini

and Gordon Plotkin. Berlin, Heidelberg: Springer Berlin Heidelberg,

1995, pp. 266–278. isbn: 978-3-540-49178-1.

6

	Universe
	Inconsistency
	Repairing Universes
	Univalence Principle
	Function Equivalence
	Univalence and Function Extensionality

