Lolymorphism

yne.mi:% lypin

FAVONIA | NICK BENTON | BOB HARPER

| —

Lolymorphism:
(
S
Dyne.mié lypin

FAVONIA | NICK BENTON | BOB HARPER

| —

Bob and I wanted to make homework

Bob and I wanted to make homework
and so we had a JFP Theoretical Pearl.

System F to PCF

type var. ¢

;
“top” type dyn

TARGET

System F to PCF

type var. ¢

Vit —t ~ dyn — dyn
v
“top” type dyn

TARGET

System F to PCF

t st ~ dyn —d
type var. | Vit —t yn yn

But keep other types!

\

“top” type dyn
Ar:nat.x - - Ar:nat.x

nat — nat - - nat — nat

System F to PCF

System F

System F to PCF

System F

nat

PCF with dyn
dyn
cast|c|(d) | new[c|(d)

¢ ::=num | fun

System F to PCF

System F

nat

PCF with dYIl new[num(3) : dyn

dyn new|fun|(f : dyn — dyn) : dyn

cast|c|(d) | new[c|(d)

¢ ::=num | fun

System F to PCF

Keep everything except variables

th = dyn
nat! := nat
(11 = 1)1 = 7'1Jr — 7'2T

(Vt.r)T =77

System F to PCF

Keep everything except variables

th = dyn
nat! := nat
(11 = 1)1 = 7'1Jr — 7'2T

(Vt.r)T =77

e = d e = d
At.e = d e|Ts] = 777

Type Application

type app - flnat
Nla

Type Application

type app

> flnat]

Type Application

type app - flnat
Nla

~ (flnat))t =7

Type Application

type app

> f[nat]

?

~ (flnat])t =

S«]
6&\‘\ 0957/

Azmat.cast|num|(fT(new[num|(x)))

Type Application

type app

> fI7]

> (flr])T =7

Type Application

type
f ——— /I

Embed and Project

inat (1) := new|num|(n)
tayn(d) :=d
loy—o, (f) = new|fun|(Az:dyn.ic, (f(js (2))))

Jnat (d) := cast|num|(d)
Jayn(d) :=d
Jor—oy (f) = Az:01.Jo, (cast[fun|(f)(is, (2)))

Type Application

e:Vt.m type app
> e[1 [/tm

et o
| = (e[r])T =7 ([r/t]T1)]

Type Application

type a
e: Vt.m yPe aPP > 6[72] : [7'2/75]7'1

el - 7—1T > (e[m))T =7 : ([ra/t]T1)T

Idea: lift the projection to handle arbitrary type operators.

Type Application

type a
e: Vt.m yPe aPP > 6[72] : [7'2/75]7'1

el - 7—1T > (e[m))T =7 : ([ra/t]T1)T

Idea: lift the projection to handle arbitrary type operators.
[dyn/O][n]s = 7

73 /Ol = (Ir2/t)"

Type Application

type a
e: Vt.m yPe aPP > 6[72] : [7'2/75]7'1

el - 7—1T [T > (6[7'2])T =7 ([Tg/t]Tl)T

Idea: lift the projection to handle arbitrary type operators.
[dyn/O][n]s = 7

[73/0lm]e = ([r2/t)m0)
[J:|o/Olw = ldyn/Olw JT : [dyn/Olw — |0/Olw

Embed and Project 2.0

t]e =0
[ul|; == dyn
lnat|; := nat
T = Toly = T — (T2
Vu.]e = 11

Find all the t!

10

Embed and Project 2.0

I (x) i=i,(x)
]r(ljat(aj) =&
Igm(2) ==
13, 0, (f) = Aw:[dyn/Olws 17, (f(JF, (2)))
Jg(ﬂf) :Jo(x)
Joat (T) ==
S (@) =@
J7, o) o= Nl Olen I, (F(IE, ()

11

Problem Statement

= d

:
6[7’2] = J[T:l]t(d)

Problem Statement

e = d

:
6[7’2] = J[T:l]t(d)

(Intended) homework assignment: no run-time errors

Problem Statement

e = d

:
6[7’2] = J[T:l]t(d)

(Intended) homework assignment: no run-time errors

Problem Statement

= d

:
6[7’2] = J[T:l]t(d)

(Intended) homework assignment: no run-time errors

Our dif

1culty: composition of types

e~ d
! System F l

System F types POF

terms terms

7 :d < pl

relations for type variables
that respect obs. equiv.

"‘635(7) bd:rt

13

er~rdn:d << pl

! Sytstem K l relations for type variables
System F ypes POF that respect obs. equiv.

terms ferms

-I—e:S(T) et

n(t)(e, o) (d))
€ N\V/t.Tl d
6[7’2] ~r d
no J here!

13

Logical Relation Recipe

STEP 1
STEP 2

STEP 3
STEP 4

weakening and exchange

the relation itself respects obs. equiv.
(and the properties you care)

composition of types/relations
fundamental lemmal!

AlFe:7=d
y~r&[n:d < pl

14

Logical Relation Recipe

STEP 1
STEP 2

weakening and exchange

the relation itself respects obs. equiv.
(and the properties you care)

fundamental lemmal

AlFe:7=d
y~r&[n:d < pl

14

Compositionality
T2/t T1

10

Compositionality
T2/t T1

Ra(e,d) :==e~r, d[n:d <+ p)

€ ~ry d t— RQ
.
implies e ~, /1 J[T2] (d)

T1])t
€~ /t)m d implies

+
€ ~r; I[:_th(d) t‘—)RQ

10

Compositionality
T2/t T

Ra(e,d) :=en~p, d[n:d < pl

d t—Ro

------------ t
implies! e ~ J2 (d AN
R "ot so clear |
€ fra/ilr, @ implies ¢ 1 1b's "fL.7
€ ~r; I[:_Ql]t(d) t‘—)RQ

FAILED ATTEMPT
Compositionality

€1 ! Jt]T1—[r" /t] T2 J(dl) €1 ~Yri—>7o dl

16

FAILED ATTEMPT

Compositionality
€1 ~[r /] —[r s I (d1) e1 ~r—ry (1
€2 ~ry do

€1 €2 ~r, dl dz

16

FAILED ATTEMPT
Compositionality

€1 ! Jt]T1—[r" /t] T2 J(dl) €1 ~Yri—>7o dl

€2 ~ry do

€1 €2 ~r, dl dz

e2 ~r /1 J(d2)

16

FAILED ATTEMPT

Compositionality
€1 ~[r /] —[r s I (d1) e1 ~r—ry (1
€2 ~ry do

€1 €2 ~r, dl d2

€2 ~[r! /t]Ty J(dQ)
€1 €2~ i, J(d1) J(d2) = J(di(1(J(d2))))

16

FAILED ATTEMPT

Compositionality
€1 ~[r /] —[r s I (d1) e1 ~r—ry (1
€2 ~ry do

€1 €2 ~r, dl d2

e2 ~r /1 J(d2)
€1 €2 1/t J(d

€1 €2 ~ry dl(I(J(d2>))

16

Logical Relation Recipe

STEP 1 weakening and exchange

STEP 2 the relation itself respects obs. equiv.
(and the properties you care)

STEP 3 quasi-composition of types/relations

STEP 4 fundamental lemmal!

Thus, compiled programs
give the same numbers!

17

Concluding Notes

Concluding Notes

A nice trick to deal with embedding/projection!

Concluding Notes

A nice trick to deal with embedding/projection!

We used refinements to make I(J(dz2)) = ds
but rejected by POPL. :-(

Concluding Notes

A nice trick to deal with embedding/projection!

We used refinements to make I(J(dz2)) = ds
but rejected by POPL. :-(

We have 3 different proofs with different setups.

Concluding Notes

A nice trick to deal with embedding/projection!

We used refinements to make I(J(dz2)) = ds
but rejected by POPL. :-(

We have 3 different proofs with different setups.

Thunks to preserve values: (Vt.7)" := unit — 7'

Concluding Notes

A nice trick to deal with embedding/projection!

We used refinements to make I(J(dz2)) = ds
but rejected by POPL. :-(

We have 3 different proofs with different setups.

Thunks to preserve values: (Vt.7)" := unit — 7'

You can find open problems by TAing!

