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Is this the shortest PLunch?

Bob and I wanted to make homework
and so we had a JFP Theoretical Pearl.



3

source

TARGET

type var.

“top” type

System F to PCF



3

source

TARGET

type var.

“top” type

System F to PCF



3

source

TARGET

type var.

“top” type

But keep other types!

System F to PCF



4 

System F source

System F to PCF



4 

System F

PCF with dyn

source

TARGET

System F to PCF



4 

System F

PCF with dyn

source

TARGET

System F to PCF



5 

System F to PCF
Keep everything except variables



5 

System F to PCF
Keep everything except variables



6

Type Application
type app



6

Type Application
type app



6

Type Application
type app

?



6

Type Application
type app

?



7

Type Application
type app

?



7

Type Application
type app

?



8

Embed and Project



9

Type Application
type app



9

Type Application
type app

Idea: lift the projection to handle arbitrary type operators.



9

Type Application
type app

Idea: lift the projection to handle arbitrary type operators.



9

Type Application
type app

Idea: lift the projection to handle arbitrary type operators.

*Mayer-Wand style
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Embed and Project 2.0

Find all the t!
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Embed and Project 2.0
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Problem Statement

(Intended) homework assignment: no run-time errors

Igarashi, Pierce and Wadler [2001] showed
correctness in a minimal core calculus for
Java with generics, relying on the class table.

Our difficulty: composition of types
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System F
types

System F
terms PCF

terms

relations for type variables
that respect obs. equiv.

no J here!
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the relation itself respects obs. equiv.
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Logical Relation Recipe
weakening and exchangeSTEP 1

the relation itself respects obs. equiv.
(and the properties you care)

STEP 2

composition of types/relationsSTEP 3

fundamental lemma!STEP 4
?
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Compositionality

not so clear
if it's “iff.”
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Compositionality

Assume

We have

We want

FAILED ATTEMPT

implies(?)
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Logical Relation Recipe
weakening and exchangeSTEP 1

the relation itself respects obs. equiv.
(and the properties you care)

STEP 2

quasi-composition of types/relationsSTEP 3

fundamental lemma!STEP 4

Thus, compiled programs
give the same numbers!

(no run-time errors)
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Concluding Notes

We used refinements to make
but rejected by POPL. :-( 

Thunks to preserve values: 

You can find open problems by TAing!

A nice trick to deal with embedding/projection!

We have 3 different proofs with different setups.


