
1

Polymorphism

Favonia | Nick Benton | Bob Harper

Dynamic Typing

1

Polymorphism

Favonia | Nick Benton | Bob Harper

Dynamic TypingCORRECT

2

Is this the shortest PLunch?

Bob and I wanted to make homework

2

Is this the shortest PLunch?

Bob and I wanted to make homework
and so we had a JFP Theoretical Pearl.

3

source

TARGET

type var.

“top” type

System F to PCF

3

source

TARGET

type var.

“top” type

System F to PCF

3

source

TARGET

type var.

“top” type

But keep other types!

System F to PCF

4

System F source

System F to PCF

4

System F

PCF with dyn

source

TARGET

System F to PCF

4

System F

PCF with dyn

source

TARGET

System F to PCF

5

System F to PCF
Keep everything except variables

5

System F to PCF
Keep everything except variables

6

Type Application
type app

6

Type Application
type app

6

Type Application
type app

?

6

Type Application
type app

?

7

Type Application
type app

?

7

Type Application
type app

?

8

Embed and Project

9

Type Application
type app

9

Type Application
type app

Idea: lift the projection to handle arbitrary type operators.

9

Type Application
type app

Idea: lift the projection to handle arbitrary type operators.

9

Type Application
type app

Idea: lift the projection to handle arbitrary type operators.

*Mayer-Wand style

10

Embed and Project 2.0

Find all the t!

11

Embed and Project 2.0

12

Problem Statement

12

Problem Statement

(Intended) homework assignment: no run-time errors

12

Problem Statement

(Intended) homework assignment: no run-time errors

Igarashi, Pierce and Wadler [2001] showed
correctness in a minimal core calculus for
Java with generics, relying on the class table.

12

Problem Statement

(Intended) homework assignment: no run-time errors

Igarashi, Pierce and Wadler [2001] showed
correctness in a minimal core calculus for
Java with generics, relying on the class table.

Our difficulty: composition of types

13

System F
types

System F
terms PCF

terms

relations for type variables
that respect obs. equiv.

13

System F
types

System F
terms PCF

terms

relations for type variables
that respect obs. equiv.

no J here!

14

Logical Relation Recipe
weakening and exchangeSTEP 1

the relation itself respects obs. equiv.
(and the properties you care)

STEP 2

composition of types/relationsSTEP 3

fundamental lemma!STEP 4

14

Logical Relation Recipe
weakening and exchangeSTEP 1

the relation itself respects obs. equiv.
(and the properties you care)

STEP 2

composition of types/relationsSTEP 3

fundamental lemma!STEP 4
?

15

Compositionality

15

Compositionality

15

Compositionality

not so clear
if it's “iff.”

16

Compositionality
FAILED ATTEMPT

implies(?)

16

Compositionality

Assume

We want

FAILED ATTEMPT

implies(?)

16

Compositionality

Assume

We have

We want

FAILED ATTEMPT

implies(?)

16

Compositionality

Assume

We have

We want

FAILED ATTEMPT

implies(?)

16

Compositionality

Assume

We have

We want

FAILED ATTEMPT

implies(?)

17

Logical Relation Recipe
weakening and exchangeSTEP 1

the relation itself respects obs. equiv.
(and the properties you care)

STEP 2

quasi-composition of types/relationsSTEP 3

fundamental lemma!STEP 4

Thus, compiled programs
give the same numbers!

(no run-time errors)

18

Concluding Notes

18

Concluding Notes
A nice trick to deal with embedding/projection!

18

Concluding Notes

We used refinements to make
but rejected by POPL. :-(

A nice trick to deal with embedding/projection!

18

Concluding Notes

We used refinements to make
but rejected by POPL. :-(

A nice trick to deal with embedding/projection!

We have 3 different proofs with different setups.

18

Concluding Notes

We used refinements to make
but rejected by POPL. :-(

Thunks to preserve values:

A nice trick to deal with embedding/projection!

We have 3 different proofs with different setups.

18

Concluding Notes

We used refinements to make
but rejected by POPL. :-(

Thunks to preserve values:

You can find open problems by TAing!

A nice trick to deal with embedding/projection!

We have 3 different proofs with different setups.

