ZR18.@7.24 =9

Cartesian = ¢

Cubical e
Computational
T-I'-”]E Carlo Angiuli

ThEﬂI"y Evan Cavallo

{*) Favonia
Robert Harper
Jonathan Sterling
Todd Wilson

Cubical

features of homotopy type theory

univalence, higher inductive types

|

Computational
features of Nuprl and PVS

strict equality, strict quotients,
predicative subtypes...

Cartesian Cubical
features of homotopy type theory

univalence, higher inductive types

+

Computational
features of Nuprl and PVS

strict equality, strict quotients,
predicative subtypes...

Computational Types

. programs/
. realizers |

computation

Computational Types

~ progranms/ é computational |
- realizers ; ~ type theory |

computation theory of
computation

Computational Types

__

. programs/ | computational |

i . P {————— : :

. realizers . type theory

computation theory of
computation

. meaning E . Martin-Lof

= - P <————

. explanation . type theory

pre-mathematical

in M-L's work

A Minimum Example

M :=a | bool | true | false | if{H,H,H)

A Minimum Example

M :=a | bool | true | false | if{H,H,H)
bool val if{H,Mt ,HFf) » if{H" ,HL,HF)
true wval if{true,H,) » H

false wval if{false, ,H) » H

A Minimum Example

E M :=a | bool | true | false | if{H,H,H)

. bool val LECH ME HEY » iFCH' ,HE,HE)
i true val if(true,H,) » H
i false val if(false, ,M) » H

--

The Language

A Minimum Example

:= a | bool | true | false | if{H,H,H)

. bool val LECH ME HEY » iFCH' ,HE,HE)
i true val if(true,H,) » H
i false val if(false, ,M) » H

--

The Language

What are the types in canonical forms? {bool}

A Minimum Example

:= a | bool | true | false | if{H,H,H)

. bool val LECH ME HEY » iFCH' ,HE,HE)
i true val if(true,H,) » H
i false val if(false, ,M) » H

--

The Language

What are the types in canonical forms? {bool}

What are the canonical forms of the types?
bool: {true, false}

A Minimum Example

:= a | bool | true | false | if{H,H,H)

. bool val LECH ME HEY » iFCH' ,HE,HE)
i true val if(true,H,) » H
i false val if(false, ,M) » H

--

The Language

What are the types in canonical forms? {bool}

What are the canonical forms of the types?
bool: {true, false}

How they are equal? syntactic equality

A Minimum Example

:= a | bool | true | false | if{H,H,H)

. bool val LECH ME HEY » iFCH' ,HE,HE)
i true val if(true,H,) » H
i false val if(false, ,M) » H

--

--

: What are the types in canonical forms? {bool}

E What are the canonical forms of the types?”
' bool: {true, false}

E How they are equal? syntactic equality

One Theurg

A Minimum Example

ll

A Minimum Example

ll

A =B type
AlA' BUB' and A'=B'

A Minimum Example

ll

A =B type
AlA' BUB' and A'=B'

bool = bool type

A Minimum Example

ll

A =B type
AlA' BUB' and A'=B'

bool = bool type

if (true,bool,bool) = bool type
Ubool

A Minimum Example

ll

A =B type
AlA' BUB' and A'=B'

bool = bool type

if (true,bool,bool) = bool type
Ubool

if (true,bool,any closed term) = bool type

A Minimum Example

ll

M =N &€ A
A=A type, MUM', NUN', AlA' and M'=,.N'

A Minimum Example

ll

M =N &€ A
A=A type, MUM', NUN', AlA' and M'=,.N'

false = false &€ bool

A Minimum Example

"
ll

M =N &€ A
A=A type, MUM', NUN', AlA' and M'=,.N'

false = false € bool

if (true,true,bool) = true & if (true,bool,bool)
Ul true Ubool

A Minimum Example

ll

a:A > M =N €B
P =Q €A implies M[P/a] = N[Q/al & B[P/a]

A Minimum Example

ll

a:A > M =N €B
P =Q €A implies M[P/a] = N[Q/al & B[P/a]

b:bool >> b = if(b,true,false) & bool?

A Functional Example

M 1= a | H1-H2 | \a.H | H1 M2 | _
. (M1—H2) val \a.M val (\a.M1)M2 » M1[H2/a] |

--

Another Language

A Functional Example

‘M z=a | M—H2 | xa.H | M1 H2 | ...

E (M1—H2) val \a.M val (hZa.H1)H2 » n1[n2;a]§

--

--
[

i What are the types in canonical forms?
the least fixed point of
S {H—-N | Hl, Hl in S} union ...

: What are the canonical forms of the types?
: A—B: {\a.M}

: How they are equal?
A1—B1 = A2—B2 if A1 = A2 and B1 = BZ
\a.M1 =,_, \a.M2 if a:A >> M1 =H2 € B

u
--

Variables

Nuprl/...

Coq/Agda/. ..

Vars range over
closed terms

Defined by
transition b/w
closed terms

Vars are indet.

Defined by
conversion b/w
open terms

18

Open-endedness

Proof theory/tactics/editors

V

Computational type theory

y

Programming language

Open-endedness

Proof theory/tactics/editors

V

Computational type theory

y

Programming language

lll

11

Homotopy Type Theory

Homotopy
Type Theory
Univalent Foundati lathematics

dations of M

github.com/HoTT/book

12

Homotopy Type Theory

o e POiNts

13

Homotopy Type Theory

o—°
e—*® paths

o e POiNts

Homotopy Type Theory

paths

o P between
o ® paths

o—°
e—*® paths

o e POiNts

13

Homotopy Type Theory

paths

o P between
o ® paths

o—°
e—*® paths

o e POiNts

13

Equality and Paths

Equality (=)

Silent in theory

2+ 3 =5
fst (M,N) = M

14

Equality and Paths

Equality (=)

Silent in theory
2+ 3 =5
fst (M,N) = M
If A=Band M : A then M : B

14

If

Equality and Paths

Equality (=)

Silent in theory

2 + 3 =5
fst (M,N) = M
If A =Band M : A then M : B

Paths (=)
Visible in theory

: A=B and M : A then transport(M,P) :

14

Homotopy Type Theory

[Awodey and Warren] [Voevodsky et al] [van den Berg and Garner]

A Type Space
a : A Element Point
f : A-B Function Continuous Mapping

C : A - Type Dependent Type Fibration

a =, b Identification Path

15

Features of HoTIT

lence

Univa

lence between

is an equiva

I1f E

A=B

types A and B, then ua(E)

Higher Inductive Types

,,ul «rﬂu%\
XK=

Canonicity?

Canonicity broken by
new features stated as axioms!

Canonicity?

Canonicity broken by
new features stated as axioms!

Canonicity

For any M : bool, either
M = true : bool or M = false : bool

Canonicity?

Canonicity broken by
new features stated as axioms!

Canonicity

For any M : bool, either
M = true : bool or M = false : bool

ua(not) : bool = bool
transport (ua(not),true) # false

17

Canonicity for All

Canonicity for bool means
canonicity for everyone

Canonicity for All

Canonicity for bool means
canonicity for everyone

M : bool x A
fst(M) = 7?77 : bool

Canonicity for All

Canonicity for bool means
canonicity for everyone

M : bool x A
fst(M) = 7?77 : bool

Wants M = (P,({) and then
fst(M) = fst(P,Q) = P = true or false

18

Canonicity for Paths?

M : A
refl(M) : M =, M

19

Canonicity for Paths?

M : A
refl(M) : M =, M

a:AFR : Cla,a,refl(a)) P : M =N

path-ind[C] (a.R,P) : C(M,N,P)

19

Canonicity for Paths?

M : A
refl(M) : M =, M

a:AFR : Cla,a,refl(a)) P : M =N

path-ind[C] (a.R,P) : C(M,N,P)

a:AFR : Cla,a,refl(a)) M : A

path-ind[C] (a.R,refl1(M)) = R[M/a]
: C(M,M,ref1(M))

19

Canonicity for Paths?

M : A
refl(M) : M =, M

a:AFR : Cla,a,refl(a)) P : M =N

path-ind[C] (a.R,P) : C(M,N,P)

a:AFR : Cla,a,refl(a)) M : A

path-ind[C] (a.R,refl1(M)) = R[M/a]
: C(M,M,ref1(M))

path-ind|[C] (a.R,ua(E)) = 777

19

Restore Canonicity

Can we have a new TT with
canonicity + univalence?

Yes with De Morgan cubes [CCHM 2016]
Yes with Cartesian cubes [AFH 2017]

and higher inductive types?

Examples with De Morgan cubes [CHM 2018]
Yes with Cartesian cubes [CH 2018]

28

Restore Canonicity

Idea: each type manages 1ts own paths

Restore Canonicity

Idea: each type manages 1ts own paths

base : S1

Restore Canonicity

Idea: each type manages 1ts own paths

base : S1
loop : base = base

Restore Canonicity

Idea: each type manages its own paths

base : S1

21

Restore Canonicity

Idea: each type manages 1ts own paths

base : S1
. . TR B bgech
base x:IF loop{x} : S1
e loop{0} = base : S1
loop loop{1} = base : S1

21

Restore Canonicity

Idea: each type manages 1ts own paths

o ., base : S1
. . TR B bgech
base x:1 F loop{x} : S1
T loop{0} = base : S1
loop loop{1} = base : S1

Kan structure:
sufficient to implement path-ind

Kan types: types with Kan structure

21

Cartesian Cubes

Introducing I the formal interval

Cartesian Cubes

Introducing I the formal interval

rto:l rt1:l
r, x:I, r' kF x:I

22

Cartesian Cubes

Introducing I the formal interval

rto:l rt1:l
r, x:I, r' kF x:I

x.: 1, x,:1, ..., x:IFM : A
<~ M is an n-cube in A .

22

Cartesian Cubes

Introducing I the formal interval

rto:l rt1:l
r, x:I, r' kF x:I

Cartesian: works as normal contexts

M(o/x) M(1/x) M(y/x)

| L

23

Cubical Programming

dim expr v z= 8 | 1 | =

§) » 1
o o
indeterminate

24

Circle

25

Circle

/7 dim
M = 31 | base | loop{r}; expr
| S1elim{a.M, H, H, x_.H) | .
.
base
loop{x}

25

Circle

/7 dim
M = 31 | base | loop{r}; expr
| S1elim{a.M, H, H, x_.H) | .
.
base
loop{x}
31 val

25

Circle
/7 dim
M = 31 | base | loop{r}; expr
| S1elim{a.M, H, H, x.H) | ...

base wval

25

Circle
/7 dim
M = 31 | base | loop{r}; expr
| S1elim{a.M, H, H, x.H) | ...

o base wval
°

base loop{=} val
loop{x} loop{8} » base

<1 wal loop{1} » base

Circle

H e M

S1elim{a.fA, M, B, x.L)}
» S1elim{a.fn, M", B, x.L}

20

Circle

H e M

S1elim{a.fA, M, B, x.L)}
» S1elim{a.fn, M", B, x.L}

$1elim{a.fA, base, B, x.)
» B

Circle

H e M

S1elim{a.fA, M, B, x.L)}
» S1elim{a.fn, M", B, x.L}

$1elim{a.fA, base, B, x.)
» B

S$1elim{a.A, loop{x}, , u.L)
» L<x/y>

Kan 1/2: Coercion

% .H

Kan 1/2: Coercion

coe[B~21]
H $R_AF(H)
@------------emmmmeeaaaaaaa- >0
M M X
° > 7

Kan 1/2: Coercion

coe[B~21]
H $R_AF(H)
@------------emmmmeeaaaaaaa- >0
M M X
° > 7

coe[r~ar" J{=Zx.A (M) S Adr Fx>

M
A< Ffx>

2F

Kan 1/2: Coercion

coe[B~21]
H $R_AF(H)
@------------emmmmeeaaaaaaa- >0
M M X
° > 7

coe[r~ar" J{=Zx.A (M) S Adr Fx>

M
A<r S =

coe[r~ar [{x.AYH) = H € Acrin>

Kan 1/2: Coercion

coe[B~ax] coe[B~21]
H {¥-Ax(M) {x-A}(M)
)

M M X

® >0

coe[r~ar" J{=Zx.A (M) S Adr Fx>

M
A<r S =

coe[r~ar [{x.AYH) = H € Acrin>

Kan 2/2: Homogeneous Comp.

N, N, L'T

-
® >0

28

Kan 2/2: Homogeneous Comp.

hcom[B~21]1{A} (M)
[x=8-y.Ny, x=1—y.N,]
g
N, N, L'T
=
® >0
M

28

Kan 2/2: Homogeneous Comp.

hcom[B~21]1{A} (M)
[x=8-y.Ny, x=1—y.N,]
g
N, N, L'T
=
® >0
M

hcom[F~2r" J{A}{H} [., Fi=F';—Yy.N;, ..] € n

28

Kan 2/2: Homogeneous Comp.

hcom[8~21]1{A} (M)
[x=8-y.Ny, x=1—y.N,]
g
N, N, L'T
=
® >0
M

hcom[F~2r" J{A}{H} [., Fi=F';—Yy.N;, ..] € n

hcom[r~ar]{AY{M) = H €A
hcom[r~ar " [{AF{M)}[..., r;=r;—y.H;, ..]
= N;<r'fy> € n

28

Kan 2/2: Homogeneous Comp.

29

Kan Circle

coe[r~Ar"]{ .313:(M) » H

Kan Circle

coe[r~Ar"]{ .313:(M) » H

hcom[F~aF " 1{S13(H)[...] » Fhcom[r~ar ']{H)[...]

\\\~forma1 homo.
composition

Kan Circle

coe[r~Ar"]{ .313:(M) » H

hcom[F~aF " 1{S13(H)[...] » Fhcom[r~ar ']{H)[...]

\\\~forma1 homo.
fhcom[r~ar] {M)[..] » H composition

Kan Circle

coe[r~Ar"]{ .313:(M) » H

hcom[r~ar' [{S$1}{(M)[..] » Fhcom[r~ar"]{M)][..]

\\\~forma1 homo.
fhcom[r~ar] {M)[..] » H composition

rt=r' r;=r"; (the first i)

1

fhcom[r-~ar* J(H}[.., Fi=F";—U.H;, ..] » H;<r"fu

Kan Circle

coe[r~Ar"]{ .313:(M) » H

hcom[r~ar' [{S$1}{(M)[..] » Fhcom[r~ar"]{M)][..]

\\\~forma1 homo.
fhcom[r~ar] {M}[..] » H composition

rt=r' r;=r"'; (the first i)

1

fhcom[r-~ar* J(H}[.., Fi=F";—U.H;, ..] » H;<r"fu

rt=r' r;*=r"; for all 1

fhcom[p~ar " J(H)[..] val

Kan Circle

S1elim needs to handle fcom

Kan Circle

S1elim needs to handle fcom

Fit=r' r;¥=r-,

$1elim{a.A, fhcom[r~ar"']{M)[..], B, x.L)
» com[r~ar " J{y.A[Fhcom[r~Ayp]{H}[..]Ffa}
($1elim{M, B, x.L))[..]

Slelim(composition) P composition(Slelim)

Cubical Stability

Dimension substs. do not
commute with evaluation!

Cubical Stability

Dimension substs. do not
commute with evaluation!

S1elim{a.f,
loop{x}, B, y.L)

| — LL<x/Sy>

| <B %>

l

L<B/y>

32

Cubical Stability

Dimension substs. do not
commute with evaluation!

S1elim{a.fA,
loop{x}, B, y.L)

| — LL<xfyr

i CB/RD T

l

31elim{a.A, | —> B {=77?=» L<{BSy>

base, B, y.L)

32

Cubical Stability

Dimension substs. do not
commute with evaluation!

S1elim{a.f,
loop{x}, B, y.L)

| —3 L{ny}

l CB/RD T

l

31elim{a.nA, | —> B {=77?=» L<{BSy>

base, B, y.L)

Restrict our theory to
only cubically stable parts
32

Cubical Type Theory

stability: consider every substitution

Cubical Type Theory

stability: consider every substitution

-~ N\ dim
A =B type [¥] context

A and B stably recognize the same stable values
and have stably equal Kan structures

(see our arXiv papers)
33

Cubical Type Theory

stability: consider every substitution

-~ N\ dim
A =B type [¥] context

A and B stably recognize the same stable values
and have stably equal Kan structures

M =N€EA [¥]
A = A type [V¥],
M and N stably eval to M' and N',
A stably treats M' and N' as the same

(see our arXiv papers)

3d

Variables

Nuprl/...

Coq/Agda/. ..

Vars range over
closed terms

Defined by
transition b/w
closed terms

Vars are indet.

Defined by
conversion b/w
open terms

exp vars

N

dim wvars

/

cubical computational TT

34

arXiv papers

CHTT Part I [AHW 2016]

Cartesian cubical + computational

CHTT Part II [AH 2017]

Dependent types

CHTT Part III [AFH 2017]

Univalent Kan universes
Strict equality

CHTT Part IV [AFH 2017]

Higher inductive types

35

Proof Assistants
RedPRL

In Nuprl style
redprl.org

redtt

(Work in progress)
github.com/RedPRL/redtt

yacctt

Proof of concept

modified from cubicaltt
github.com/mortbergsyacctt

30

Conclusion

We extended Nuprl semantics
by cubical structure which
justifies key features of HoTT

Conclusion

We extended Nuprl semantics
by cubical structure which
justifies key features of HoTT

Best of the two worlds!

Conclusion

We extended Nuprl semantics
by cubical structure which
justifies key features of HoTT

Best of the two worlds!

We also built proof assistants

redprl.org
github.com/RedPRL/redtt
github.com/mortbergsyacctt

