2018.07.24 # Cartesian Cubical Computational Type Carlo Ang Theory Evan Cav Carlo Angiuli Evan Cavallo (*) Favonia Robert Harper Jonathan Sterling Todd Wilson #### Cubical features of homotopy type theory univalence, higher inductive types + #### Computational features of Nuprl and PVS strict equality, strict quotients, predicative subtypes... #### Cartesian Cubical features of homotopy type theory univalence, higher inductive types + #### Computational features of Nuprl and PVS strict equality, strict quotients, predicative subtypes... #### Computational Types programs/ realizers computation # Computational Types programs/ realizers computation <---- computational type theory theory of computation # Computational Types programs/ realizers computation <---- computational type theory theory of computation meaning explanation <---- Martin-Löf type theory pre-mathematical in M-L's work ``` M := a | bool | true | false | if(M,M,M) ``` The Language The Language What are the types in canonical forms? {bool} The Language ``` What are the types in canonical forms? {bool} What are the canonical forms of the types? bool: {true, false} ``` The Language ``` What are the types in canonical forms? {bool} What are the canonical forms of the types? bool: {true, false} How they are equal? syntactic equality ``` The Language ``` What are the types in canonical forms? {bool} What are the canonical forms of the types? bool: {true, false} How they are equal? syntactic equality ``` One Theory ``` M := a | bool | true | false | if(M,M,M) types: {bool} with syntactic equality ≈ bool: {true, false} with syntactic equality ≈ bool ``` ``` M := a | bool | true | false | if(M,M,M) types: {bool} with syntactic equality ≈ bool: {true, false} with syntactic equality ≈_{bool} ``` $$A \doteq B \text{ type}$$ $A \downarrow A' B \downarrow B' \text{ and } A' \approx B'$ ``` M := a | bool | true | false | if(M,M,M) types: {bool} with syntactic equality ≈ bool: {true, false} with syntactic equality ≈ bool ``` $$A \doteq B \text{ type}$$ $A \downarrow A' B \downarrow B' \text{ and } A' \approx B'$ bool ≐ bool type ``` M := a | bool | true | false | if(M,M,M) types: {bool} with syntactic equality ≈ bool: {true, false} with syntactic equality ≈_{bool} ``` $$A \doteq B \text{ type}$$ $A \downarrow A' B \downarrow B' \text{ and } A' \approx B'$ ``` M := a | bool | true | false | if(M,M,M) types: {bool} with syntactic equality ≈ bool: {true, false} with syntactic equality ≈ bool ``` $$A \doteq B \text{ type}$$ $A \downarrow A' B \downarrow B' \text{ and } A' \approx B'$ ``` M := a | bool | true | false | if(M,M,M) types: {bool} with syntactic equality ≈ bool: {true, false} with syntactic equality ≈ bool ``` ``` M := a | bool | true | false | if(M,M,M) types: {bool} with syntactic equality ≈ bool: {true, false} with syntactic equality ≈ bool ``` false \doteq false \in bool ``` M := a | bool | true | false | if(M,M,M) types: {bool} with syntactic equality ≈ bool: {true, false} with syntactic equality ≈ bool ``` ``` M := a | bool | true | false | if(M,M,M) types: {bool} with syntactic equality ≈ bool: {true, false} with syntactic equality ≈ bool ``` $$a:A >> M \doteq N \in B$$ P \displies M[P/a] \displies N[Q/a] \in B[P/a] ``` M := a | bool | true | false | if(M,M,M) types: {bool} with syntactic equality ≈ bool: {true, false} with syntactic equality ≈_{bool} ``` $$a:A >> M \doteq N \in B$$ P \displies M[P/a] \displies N[Q/a] \in B[P/a] b:bool >> b \doteq if(b,true,false) \in bool? #### A Functional Example ``` M := a | M1→M2 | \a.M | M1 M2 | ... (M1→M2) val \a.M val (\a.M1)M2 ↔ M1[M2/a] Another Lanquage ``` # A Functional Example ``` M := a | M1→M2 | \a.M | M1 M2 | ... (M1→M2) val \a.M val (\a.M1)M2 → M1[M2/a] Another Language What are the types in canonical forms? the least fixed point of S → {M→N | M↓, N↓ in S} union ... What are the canonical forms of the types? A→B: {\a.M} How they are equal? A1 \rightarrow B1 \approx A2 \rightarrow B2 if A1 = A2 and B1 = B2 \a.M1 \approx_{A\rightarrow B} \a.M2 if a:A >> M1 \stackrel{.}{=} M2 \stackrel{.}{\leftarrow} B ``` #### Variables | Nuprl/ | Coq/Agda/ | |--|--------------------------------------| | Vars range over
closed terms | Vars are indet. | | Defined by transition b/w closed terms | Defined by conversion b/w open terms | #### Open-endedness ``` Proof theory/tactics/editors ↓ Computational type theory ↓ Programming language ``` #### Open-endedness Proof theory/tactics/editors ↓ Computational type theory ↓ Programming language Canonicity always holds github.com/HoTT/book #### Equality and Paths ``` Equality (\equiv) Silent in theory 2 + 3 \equiv 5 fst \langle M, N \rangle \equiv M ``` # Equality and Paths ``` Equality (\equiv) Silent in theory 2 + 3 \equiv 5 fst \langle M, N \rangle \equiv M If A \equiv B and M : A then M : B ``` # Equality and Paths ``` Equality (\equiv) Silent in theory 2 + 3 \equiv 5 fst (M,N) \equiv M If A \equiv B and M : A then M : B Paths (=) Visible in theory If P : A=B and M : A then transport(M,P) : B ``` # Homotopy Type Theory [Awodey and Warren] [Voevodsky et al] [van den Berg and Garner] A Type Space a: A Element Point $f: A \rightarrow B$ Function Continuous Mapping $C: A \rightarrow Type$ Dependent Type Fibration $a =_A b$ Identification Path #### Features of HoTT #### Univalence If E is an equivalence between types A and B, then ua(E):A=B #### Higher Inductive Types ### Canonicity? Canonicity broken by new features stated as axioms! ### Canonicity? Canonicity broken by new features stated as axioms! #### Canonicity For any M: bool, either $M \equiv true : bool or <math>M \equiv false : bool$ ### Canonicity? Canonicity broken by new features stated as axioms! #### Canonicity ``` For any M : bool, either M \equiv true : bool or M \equiv false : bool ``` ``` ua(not) : bool = bool transport(ua(not), true) ≠ false ``` ### Canonicity for All Canonicity for bool means canonicity for everyone # Canonicity for All Canonicity for bool means canonicity for everyone ``` M: bool \times A fst(M) \equiv ??? : bool ``` # Canonicity for All Canonicity for bool means canonicity for everyone ``` M: bool \times A fst(M) \equiv ??? : bool ``` Wants $M \equiv \langle P, Q \rangle$ and then $fst(M) \equiv fst\langle P, Q \rangle \equiv P \equiv \text{true or false}$ $$\frac{M : A}{refl(M) : M =_A M}$$ ``` \frac{M:A}{refl(M):M=_AM} a:A \vdash R:C(a,a,refl(a)) P:M=N path-ind[C](a.R,P):C(M,N,P) ``` ``` M : A refl(M) : M =_{A} M a:A \vdash R : C(a,a,refl(a)) \quad P : M = N path-ind[C](a.R,P) : C(M,N,P) a:A \vdash R : C(a,a,refl(a)) \quad M : A path-ind[C](a.R,refl(M)) \equiv R[M/a] : C(M,M,refl(M)) ``` ``` M : A refl(M) : M =_{A} M a:A \vdash R : C(a,a,refl(a)) \quad P : M = N path-ind[C](a.R,P) : C(M,N,P) a:A \vdash R : C(a,a,refl(a)) \quad M : A path-ind[C](a.R,refl(M)) \equiv R[M/a] : C(M,M,refl(M)) ``` $path-ind[C](a.R,ua(E)) \equiv ???$ # Can we have a new TT with canonicity + univalence? Yes with De Morgan cubes [CCHM 2016] Yes with Cartesian cubes [AFH 2017] #### ... and higher inductive types? Examples with De Morgan cubes [CHM 2018] Yes with Cartesian cubes [CH 2018] Idea: each type manages its own paths Idea: each type manages its own paths base : S1 Idea: each type manages its own paths base: S1 loop : base = base Idea: each type manages its own paths base : S1 Pour : base 7 base Idea: each type manages its own paths ``` base : S1 roop : Loade 7 bree x: | | | loop{x} : S1 loop{0} | | | base : S1 loop{1} | | | base : S1 ``` Idea: each type manages its own paths base : S1 cop : base = base x: | | loop{x} : S1 loop{0} | \equiv base : S1 loop{1} | \equiv base : S1 Kan structure: sufficient to implement path-ind Kan types: types with Kan structure Introducing I the formal interval Introducing I the formal interval $$\Gamma \vdash O: \mathbb{I}$$ $\Gamma \vdash 1: \mathbb{I}$ $\Gamma, x: \mathbb{I}$ Introducing I the formal interval $$\Gamma \vdash 0: \mathbb{I}$$ $\Gamma \vdash 1: \mathbb{I}$ $\Gamma, x: \mathbb{I}$ $$x_1:\mathbb{I}, x_2:\mathbb{I}, \ldots, x_n:\mathbb{I} \vdash M : A$$ $\Leftrightarrow M \text{ is an } n\text{-cube in } A$ Introducing I the formal interval $$\Gamma \vdash O: \mathbb{I}$$ $\Gamma \vdash 1: \mathbb{I}$ $\Gamma, x: \mathbb{I}$ Cartesian: works as normal contexts $$M(O/x)$$ $M(1/x)$ $M(y/x)$ # Cubical Programming ``` dim expr r := 0 | 1 | x ``` ``` M := S1 | base | loop{r} expr | S1elim(a.M, M, M, x.M) | ... ``` ``` M := S1 | base | loop{r} expr | S1elim(a.M, M, M, x.M) | ... ``` S1 val ``` M := S1 | base | loop{r} expr | S1elim(a.M, M, M, x.M) | ... ``` S1 val base val ``` M := S1 | base | loop{r} expr | S1elim(a.M, M, M, x.M) | ... ``` S1 val base val loop{x} val loop{0} → base loop{1} → base ## Kan 1/2: Coercion $hcom[r \sim r'] \{A\}(M) [..., r_i = r'_i \rightarrow y.N_i, ...] \in A$ hcom[0~71]{A}(M) ≐ N₁<r'/y> ∈ A ``` [x=0\rightarrow y.N_0, x=1\rightarrow y.N_1] М hcom[r \sim r'] \{A\}(M) [..., r_i = r'_i \rightarrow y.N_i, ...] \in A hcom[r \sim r]{A}(M) = M \in A hcom[r \sim r']{A}(M)[..., r_i=r_i \rightarrow y.N_i, ...] ``` coe[r~r']{_.S1}(M) → M ``` coe[r~r']{_.S1}(M) → M hcom[r \sim r']{S1}(M)[...] \rightarrow fhcom[r \sim r'](M)[...] -formal homo. composition fhcom[r~~r](M)[...] → M r!=r' r_i=r'_i (the first i) fhcom[r \sim r'](M)[..., r_i = r'_i \rightarrow y \cdot N_i, ...] \rightarrow N_i \langle r' / y \rangle ``` ``` coe[r~r']{_.S1}(M) → M hcom[r \sim r'] \{S1\}(M)[...] \rightarrow fhcom[r \sim r'](M)[...] formal homo. composition fhcom[r~r](M)[...] → M r!=r' r_i=r'_i (the first i) fhcom[r \sim r'](M)[..., r_i = r'_i \rightarrow y \cdot N_i, ...] \rightarrow N_i < r' / y > r!=r' r_i!=r'_i for all i fhcom[r~7r'](M)[...] val ``` Sielim needs to handle from Sielim needs to handle from ``` r!=r' r_i!=r'_i S1elim(a.A, fhcom[r~r'](M)[...], B, x.L) → com[r~r']{y.A[fhcom[r~y](M)[...]/a} (S1elim(M, B, x.L))[...] ``` S1elim(composition) → composition(S1elim) Dimension substs. do not commute with evaluation! Restrict our theory to only cubically stable parts ## Cubical Type Theory stability: consider every substitution ## Cubical Type Theory stability: consider every substitution $$A \doteq B \text{ type } [\Psi]$$ context A and B stably recognize the same stable values and have stably equal Kan structures (see our arXiv papers) # Cubical Type Theory stability: consider every substitution A and B stably recognize the same stable values and have stably equal Kan structures $$M \doteq N \in A [\Psi]$$ A \doteq A type [Ψ], M and N stably eval to M' and N', A stably treats M' and N' as the same (see our arXiv papers) #### Variables | Nuprl/ | Coq/Agda/ | |--|--------------------------------------| | Vars range over
closed terms | Vars are indet. | | Defined by transition b/w closed terms | Defined by conversion b/w open terms | exp vars dim vars cubical computational TT ## arXiv papers CHTT Part I [AHW 2016] Cartesian cubical + computational CHTT Part II [AH 2017] Dependent types CHTT Part III [AFH 2017] Univalent Kan universes Strict equality CHTT Part IV [AFH 2017] Higher inductive types #### Proof Assistants #### RedPRL In Nuprl style redprl.orq #### redtt (Work in progress) github.com/RedPRL/redtt #### yacctt Proof of concept modified from cubicaltt github.com/mortberg/yacctt #### Conclusion We extended Nuprl semantics by cubical structure which justifies key features of HoTT #### Conclusion We extended Nuprl semantics by cubical structure which justifies key features of HoTT Best of the two worlds! #### Conclusion We extended Nuprl semantics by cubical structure which justifies key features of HoTT Best of the two worlds! We also built proof assistants redprl.org github.com/RedPRL/redtt github.com/mortberg/yacctt