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A Minimum Example

:= a | bool | true | false | if{H,H,H)

. bool val LECH ME HEY » iFCH' ,HE,HE)
i true val if(true,H, ) » H
i false val if(false, ,M) » H

----------------------------------------------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------------------------------------------

: What are the types in canonical forms? {bool}

E What are the canonical forms of the types?”
' bool: {true, false}

E How they are equal? syntactic equality

One Theurg
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A =B type
AlA' BUB' and A'=B'

bool = bool type

if (true,bool,bool) = bool type
Ubool

if (true,bool,any closed term) = bool type
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"
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M =N &€ A
A=A type, MUM', NUN', AlA' and M'=,.N'

false = false € bool

if (true,true,bool) = true & if (true,bool,bool)
Ul true Ubool
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A Minimum Example

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

a:A > M =N €B
P =Q €A implies M[P/a] = N[Q/al & B[P/a]

b:bool >> b = if(b,true,false) & bool?



A Functional Example

M 1= a | H1-H2 | \a.H | H1 M2 | _
. (M1—H2) val \a.M val (\a.M1)M2 » M1[H2/a] |

----------------------------------------------------------------------------------------------------------------------------

Another Language



A Functional Example

‘M z=a | M—H2 | xa.H | M1 H2 | ...

E (M1—H2) val \a.M val (hZa.H1)H2 » n1[n2;a]§

----------------------------------------------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------------------------------------------
[

i What are the types in canonical forms?
the least fixed point of
S {H—-N | Hl, Hl in S} union ...

: What are the canonical forms of the types?
: A—B: {\a.M}

: How they are equal?
A1—B1 = A2—B2 if A1 = A2 and B1 = BZ
\a.M1 =,_, \a.M2 if a:A >> M1 =H2 € B

u
----------------------------------------------------------------------------------------------------------------------------



Variables

Nuprl/...

Coq/Agda/. ..

Vars range over
closed terms

Defined by
transition b/w
closed terms

Vars are indet.

Defined by
conversion b/w
open terms

18
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Open-endedness

Proof theory/tactics/editors

V

Computational type theory

y

Programming language

---------------------------------------------------------------------------------

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
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Homotopy Type Theory

Homotopy
Type Theory
Univalent Foundati lathematics

dations of M

github.com/HoTT/book

12
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Equality and Paths

Equality (=)

Silent in theory

2+ 3 =5
fst (M,N) = M
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Equality and Paths

Equality (=)

Silent in theory
2+ 3 =5
fst (M,N) = M
If A=Band M : A then M : B
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If

Equality and Paths

Equality (=)

Silent in theory

2 + 3 =5
fst (M,N) = M
If A =Band M : A then M : B

Paths (=)
Visible in theory

: A=B and M : A then transport(M,P) :

14



Homotopy Type Theory

[Awodey and Warren] [Voevodsky et al] [van den Berg and Garner]

A Type Space
a : A Element Point
f : A-B Function Continuous Mapping

C : A - Type Dependent Type Fibration

a =, b Identification Path

15



Features of HoTIT

lence

Univa

lence between

is an equiva

I1f E

A=B

types A and B, then ua(E)

Higher Inductive Types
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Canonicity?

Canonicity broken by
new features stated as axioms!

Canonicity

For any M : bool, either
M = true : bool or M = false : bool

ua(not) : bool = bool
transport (ua(not),true) # false

17
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Canonicity for All

Canonicity for bool means
canonicity for everyone

M : bool x A
fst(M) = 7?77 : bool

Wants M = (P,({) and then
fst(M) = fst(P,Q) = P = true or false

18



Canonicity for Paths?

M : A
refl(M) : M =, M
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Canonicity for Paths?

M : A
refl(M) : M =, M

a:AFR : Cla,a,refl(a)) P : M =N

path-ind[C] (a.R,P) : C(M,N,P)
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Canonicity for Paths?

M : A
refl(M) : M =, M

a:AFR : Cla,a,refl(a)) P : M =N

path-ind[C] (a.R,P) : C(M,N,P)

a:AFR : Cla,a,refl(a)) M : A

path-ind[C] (a.R,refl1(M)) = R[M/a]
: C(M,M,ref1(M))
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Canonicity for Paths?

M : A
refl(M) : M =, M

a:AFR : Cla,a,refl(a)) P : M =N

path-ind[C] (a.R,P) : C(M,N,P)

a:AFR : Cla,a,refl(a)) M : A

path-ind[C] (a.R,refl1(M)) = R[M/a]
: C(M,M,ref1(M))

path-ind|[C] (a.R,ua(E)) = 777

19



Restore Canonicity

Can we have a new TT with
canonicity + univalence?

Yes with De Morgan cubes [CCHM 2016]
Yes with Cartesian cubes [AFH 2017]

and higher inductive types?

Examples with De Morgan cubes [CHM 2018]
Yes with Cartesian cubes [CH 2018]

28
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base : S1
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______



Restore Canonicity

Idea: each type manages its own paths

base : S1

______
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Restore Canonicity

Idea: each type manages 1ts own paths

base : S1
. . TR B bgech
base x:IF loop{x} : S1
e loop{0} = base : S1
loop loop{1} = base : S1

21



Restore Canonicity

Idea: each type manages 1ts own paths

o ., base : S1
. . TR B bgech
base x:1 F loop{x} : S1
T loop{0} = base : S1
loop loop{1} = base : S1

Kan structure:
sufficient to implement path-ind

Kan types: types with Kan structure

21
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Introducing I the formal interval

rto:l rt1:l
r, x:I, r' kF x:I
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Cartesian Cubes

Introducing I the formal interval

rto:l rt1:l
r, x:I, r' kF x:I

x.: 1, x,:1, ..., x:IFM : A
<~ M is an n-cube in A .

22



Cartesian Cubes

Introducing I the formal interval

rto:l rt1:l
r, x:I, r' kF x:I

Cartesian: works as normal contexts

M(o/x) M(1/x) M(y/x)

| L

23



Cubical Programming

dim expr v z= 8 | 1 | =

§) » 1
o o
indeterminate

24



______

Circle

25



Circle

/7 dim
M = 31 | base | loop{r}; expr
| S1elim{a.M, H, H, x_.H) | .
.
base
loop{x}

25



Circle

/7 dim
M = 31 | base | loop{r}; expr
| S1elim{a.M, H, H, x_.H) | .
.
base
loop{x}
31 val
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Circle
/7 dim
M = 31 | base | loop{r}; expr
| S1elim{a.M, H, H, x.H) | ...

base wval

______

25



Circle
/7 dim
M = 31 | base | loop{r}; expr
| S1elim{a.M, H, H, x.H) | ...

o base wval
°

base loop{=} val
loop{x} loop{8} » base

<1 wal loop{1} » base



______

Circle

H e M

S1elim{a.fA, M, B, x.L)}
» S1elim{a.fn, M", B, x.L}

20
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» B



______

Circle

H e M

S1elim{a.fA, M, B, x.L)}
» S1elim{a.fn, M", B, x.L}

$1elim{a.fA, base, B, x. )
» B

S$1elim{a.A, loop{x}, , u.L)
» L<x/y>
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Kan 1/2: Coercion

coe[B~ax] coe[B~21]
H {¥-Ax(M)  {x-A}(M)
)

M M X

® >0

coe[r~ar" J{=Zx.A (M) S Adr Fx>

M
A<r S =

coe[r~ar [{x.AYH) = H € Acrin>



Kan 2/2: Homogeneous Comp.

N, N, L'T

-
® >0
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Kan 2/2: Homogeneous Comp.

hcom[ 8~21]1{A} (M)
[x=8-y.Ny, x=1—y.N,]
g
N, N, L'T
=
® >0
M

hcom[F~2r" J{A}{H} [., Fi=F';—Yy.N;, ..] € n

hcom[r~ar]{AY{M) = H €A
hcom[r~ar " [{AF{M)}[..., r;=r;—y.H;, ..]
= N;<r'fy> € n

28



Kan 2/2: Homogeneous Comp.

29
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Kan Circle

coe[r~Ar"]{ .313:(M) » H

hcom[r~ar' [{S$1}{(M)[..] » Fhcom[r~ar"]{M)][..]

\\\~forma1 homo.
fhcom[r~ar ] {M}[..] » H composition

rt=r' r;=r"'; (the first i)

1

fhcom[r-~ar* J(H}[.., Fi=F";—U.H;, ..] » H;<r"fu

rt=r' r;*=r"; for all 1

fhcom[p~ar " J(H)[..] val
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Kan Circle

S1elim needs to handle fcom

Fit=r' r;¥=r-,

$1elim{a.A, fhcom[r~ar"']{M)[..], B, x.L)
» com[r~ar " J{y.A[ Fhcom[r~Ayp]{H}[..]Ffa}
($1elim{M, B, x.L))[..]

Slelim(composition) P composition(Slelim)
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Cubical Stability

Dimension substs. do not
commute with evaluation!

S1elim{a.f,
loop{x}, B, y.L)

| — LL<x/Sy>

| <B %>

l

L<B/y>
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Cubical Stability

Dimension substs. do not
commute with evaluation!

S1elim{a.fA,
loop{x}, B, y.L)

| — LL<xfyr

i CB/RD T

l

31elim{a.A, | —> B {=77?=» L<{BSy>

base, B, y.L)
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Cubical Stability

Dimension substs. do not
commute with evaluation!

S1elim{a.f,
loop{x}, B, y.L)

| —3 L{ny}

l CB/RD T

l

31elim{a.nA, | —> B {=77?=» L<{BSy>

base, B, y.L)

Restrict our theory to
only cubically stable parts
32
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Cubical Type Theory

stability: consider every substitution

-~ N\ dim
A =B type [¥] context

A and B stably recognize the same stable values
and have stably equal Kan structures

(see our arXiv papers)
33



Cubical Type Theory

stability: consider every substitution

-~ N\ dim
A =B type [¥] context

A and B stably recognize the same stable values
and have stably equal Kan structures

M =N€EA [¥]
A = A type [V¥],
M and N stably eval to M' and N',
A stably treats M' and N' as the same

(see our arXiv papers)

3d



Variables

Nuprl/...

Coq/Agda/. ..

Vars range over
closed terms

Defined by
transition b/w
closed terms

Vars are indet.

Defined by
conversion b/w
open terms

exp vars

N

dim wvars

/

cubical computational TT

34



arXiv papers

CHTT Part I [AHW 2016]

Cartesian cubical + computational

CHTT Part II [AH 2017]

Dependent types

CHTT Part III [AFH 2017]

Univalent Kan universes
Strict equality

CHTT Part IV [AFH 2017]

Higher inductive types

35



Proof Assistants
RedPRL

In Nuprl style
redprl.org

redtt

(Work in progress)
github.com/RedPRL/redtt

yacctt

Proof of concept

modified from cubicaltt
github.com/mortbergsyacctt

30
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Conclusion

We extended Nuprl semantics
by cubical structure which
justifies key features of HoTT

Best of the two worlds!

We also built proof assistants

redprl.org
github.com/RedPRL/redtt
github.com/mortbergsyacctt



