
Homework 2: Infinity-Groupoids

Due 2019/02/29 (Fri) Anywhere on Earth

The goal of this homework is to learn more about the identification types
Id𝐴(𝑀;𝑁) and formalize some theorems in Agda. You should finish the
proofs in hw2-handout.agda and email your code as an Agda file to Favonia.

The first theorem is that the concatenation of 2-dimensional loops is
always commutative, no matter what the base type is. This implies that
all higher homotopy groups are abelian, which is an important result in
homotopy theory.

The second theorem is that if the equality between two elements is
decidable, then there is at most one identification between any two elements.
In other words, the base type is a set. This implies that the natural number
type ℕ is a set because it has decidable equality.

There is no dependency between these two theorems. Feel free to finish
them in any order. You can also skip the rest of this PDF and start doing
Agda in hw2-handout.agda right away! The following are additional hints
and explanations for the tasks.

1 Commutative Compositions for Higher Loops

Given a type 𝐴 with a distinguished element 𝑀, the type of (1-dimensional)
loops at 𝑀 in 𝐴 is

Id𝐴(𝑀;𝑀)
which has all the identifications from 𝑀 to 𝑀 itself. There is a group structure
on Id𝐴(𝑀;𝑀) that is similar to the groupoid structure we constructed in
class. We can iterate this process to construct higher-dimensional loop
spaces, and their group structures are always abelian. We will focus on the
second dimension in this task. To start with, a 2-dimensional loops is a loop at
refl(𝑀), whose type is

Ω2(𝐴;𝑀) B IdId𝐴(𝑀;𝑀)(refl(𝑀); refl(𝑀)).
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Imagine an extremely elastic jumping rope. A 2-dimensional loop is the
trace of this jumping rope moving from a rest position (reflexivity) and back
to the rest position (reflexivity).

One important result is that the concatenation of 2-dimensional loops is
commutative (up to identification):

Theorem 1 (a special case of Eckmann–Hilton).∏
𝑥:𝐴

∏
(𝑝:Ω2(𝐴;𝑥))

∏
(𝑞:Ω2(𝐴;𝑥))

IdΩ2(𝐴;𝑥)(𝑝 � 𝑞; 𝑞 � 𝑝).

Here is one pictorial proof: Consider four 2-dimensional paths (traces of
jumping ropes) aligned as follows:

There are two canonical ways to compose these 2-dimensional paths together.
You can vertically compose two paths and then horizontally compose two
resulting paths:

On the other hand, you can compose these paths row-wise first:
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The idea is that the eventual path should not depend on how you compose
individual parts. Now, think about the special case where the bottom left
is 𝑝 : Ω2(𝐴; 𝑥), the top right is 𝑞 : Ω2(𝐴; 𝑥), and the remaining two are the
reflexivity refl(refl(𝑥)).

𝑝

𝑞

The first method gives you 𝑝 � 𝑞:

𝑝

𝑞

The second gives you 𝑞 � 𝑝 (by reading from the top to the bottom):
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𝑝

𝑞

Because the two methods should give the same result, there is an identifica-
tion between 𝑝 � 𝑞 and 𝑞 � 𝑝. We are done! Well, at least intuitively.

In classical homotopy theory, one can prove this by the “floating islands”
argument [1, the picture on p. 340] or the Eckmann–Hilton argument, a general
principle in algebra. It turns out we additionally have a relatively short
proof in our type theory and Agda. The pictorial proofs, the algebraic magic,
and the type-theoretic code are just different avatars of the same concept.
The connection among these seemingly different proofs was claimed to be
inspiring by some experts.

The major difficulty in type theory is that we cannot simply do pattern
matching on 𝑝 : Ω2(𝐴; 𝑥) or 𝑞 : Ω2(𝐴; 𝑥) without the forbidden axiom K
(uniqueness of identification proofs). The motive in J[𝑥.𝑦.𝑝] requires the
endpoints 𝑥 and 𝑦 to be “free”, but here, the end points of 𝑝 or 𝑞 are locked
up. The banned axiom K would enable you to handle the cases where the
end points are locked, at the price of killing interesting higher-dimensional
structures. We love higher-dimensional structures.
Task 1. Finish the subtasks in the Agda file. The subtasks lead to a possible proof,
and you are free to replace them with something else. The important thing is to
prove the final theorem eckmann–hilton in Agda. (Hint) Read the proof of [2,
Theorem 2.1.6].

2 Decidability Implies Setness

The next theorem is to explore another interesting fact about identifications.
If we have a procedure to decide whether two elements are equal, then that
type is a set. To start with, the type of such a procedure 𝑑 for some type 𝐴 is:∏

𝑥:𝐴

∏
𝑦:𝐴

Id𝐴(𝑥; 𝑦) + (¬Id𝐴(𝑥; 𝑦))
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This means the procedure will either gives a proof of Id𝐴(𝑥; 𝑦) of a refutation
of it for any pair 𝑥, 𝑦 : 𝐴. We can define setness as follows:

is-set(𝐴) B
∏
𝑥:𝐴

∏
𝑦:𝐴

∏
𝑝:Id𝐴(𝑥;𝑦)

∏
𝑞:Id𝐴(𝑥;𝑦)

IdId𝐴(𝑥;𝑦)(𝑝; 𝑞)

which says that any two paths between any two elements can be identified.
(The definition of is-set is different from (but equivalent to) what we
covered on 2020/02/13. It is chosen to make your life easier.) We then have
the following theorem for any type 𝐴:

Theorem 2 (Hedberg).

©­«
∏
𝑥:𝐴

∏
𝑦:𝐴

Id𝐴(𝑥; 𝑦) + (¬Id𝐴(𝑥; 𝑦))ª®¬ → is-set(𝐴).

The idea is to construct a function 𝑠 : Id𝐴(𝑥; 𝑦) → Id𝐴(𝑥; 𝑦) for any
𝑥, 𝑦 : 𝐴 such that

• It is homotopic to the identity function. That is, you can inhabit this
type for any elements 𝑥, 𝑦 : 𝐴:∏

𝑝:Id𝐴(𝑥;𝑦)
IdId𝐴(𝑥;𝑦)(𝑠(𝑝); 𝑝)

• It is (weakly) constant. That is, you can inhabit this type for any
elements 𝑥, 𝑦 : 𝐴: ∏

𝑝:Id𝐴(𝑥;𝑦)

∏
𝑞:Id𝐴(𝑥;𝑦)

IdId𝐴(𝑥;𝑦)(𝑠(𝑝); 𝑠(𝑞))

It then follows that any two paths 𝑝 and 𝑞 can be identified. How can
we construct such a magical function 𝑠? We will exploit the fact that the
procedure 𝑑 deciding equality is able to pick an identification continuously
and functorially for any identified elements. To begin with, let’s define a
function 𝑟 : Id𝐴(𝑥; 𝑦) → Id𝐴(𝑥; 𝑦):

𝑟(𝑝) B case(𝑞.𝑞; 𝑝̄.abort(𝑝̄ 𝑝); 𝑑 𝑥 𝑦)

The idea is that, if we already know 𝑥 and 𝑦 are identified, then we can
invoke the procedure 𝑑 to obtain an identification between them. This may
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seem to be a total waste of time, because we already had an identification, but
the magic of such a detour is that the identification chosen by the procedure
𝑑 does not depend on the input identification 𝑝! Thus, 𝑟 is weakly constant by
construction and it suffices to show 𝑟 is homotopic to the identity function.

While it is true that 𝑟 is homotopic to the identity, we will use the
following function 𝑠 instead of 𝑟 to simplify the calculation:

𝑠(𝑝) B 𝑟(refl(𝑥))−1 � 𝑟(𝑝)

The function 𝑠 is also weakly constant because 𝑟 is weakly constant. For the
other condition, here is a pictorial proof showing that 𝑠 is homotopic to the
identity function: The equation can be visualized as follows, where the path
𝑠(𝑝) on the left hand side is the concatenation of the 𝑟(refl)−1 and 𝑟(𝑝):

𝑠(𝑝) 𝑝?

Why does this equation hold? It heavily depends on the fact that 𝑠 is
continuous. We can continuously shrink 𝑝 to refl, and the equation will
become:

𝑠(refl) refl

Two sides agree because 𝑟(refl)−1 and 𝑟(refl) cancel each other.

Task 2. Finish the subtasks in the Agda file. Again, you are free to replace
intermediate lemmas, as long as you can prove the final theorem hedberg in Agda.
(Hint) The above proof is already one of the most polished. I do not think the Internet
can help you much, except the Agda documentation.

3 Grading

Only one letter grade (without plus or minus) will be assigned to the entire
homework according to the criterion explained in the syllabus.
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